Topological Properties of Rauzy Fractals

Substitutions are combinatorial objects (one replaces a letter by a word) which produce sequences by iteration. They occur in many mathematical fields, roughly as soon as a repetitive process appears. In the present monograph we deal with topological and geometric properties of substitutions, in particular, we study properties of the Rauzy fractals associated to substitutions. To be more precise, let be a substitution over the finite alphabet A. We assume that the incidence matrix of is primitive and that its dominant eigenvalue is a unit Pisot number (i.e., an algebraic integer greater than one whose norm is equal to one and all of whose Galois conjugates are of modulus strictly smaller than one). It is well-known that one can attach to a set which is called central tile or Rauzy fractal of . Such a central tile is a compact set that is the closure of its interior and decomposes in a natural way in n=|A| subtiles (1),,(n). The central tile as well as its subtiles are graph directed self-affine sets that often have fractal boundary. Pisot substitutions and central tiles are of high relevance in several branches of mathematics like tiling theory, spectral theory, Diophantine approximation, the construction of discrete planes and quasicrystals as well as in connection with numeration like generalized continued fractions and radix representations. The questions coming up in all these domains can often be reformulated in terms of questions related to the topology and the geometry of the underlying central tile. After a thorough survey of important properties of unit Pisot substitutions and their associated Rauzy fractals the present monograph is devoted to the investigation of a variety of topological properties of and its subtiles. Our approach is an algorithmic one. In particular, we dwell upon the question whether and its subtiles induce a tiling, calculate the Hausdorff dimension of their boundary, give criteria for their connectivity and homeomorphy to a closed disk and derive properties of their fundamental group. The basic tools for our criteria are several classes of graphs built from the description of the tiles (i) (1in) as the solution of a graph directed iterated function system and from the structure of the tilings induced by these tiles. These graphs are of interest in their own right. For instance, they can be used to construct the boundaries as well as (i) (1in) and all points where two, three or four different tiles of the induced tilings meet. When working with central tiles in one of the above mentioned contexts it is often useful to know such intersection properties of tiles. In this sense the present monograph also aims at providing tools for ``everyday's life'' when dealing with topological and geometric properties of substitutions. Many examples are given throughout the text in order to illustrate our results. Moreover, we give perspectives for further directions of research related to the topics discussed in this monograph.

[1]  Natalie Priebe Frank,et al.  A primer of substitution tilings of the Euclidean plane , 2007, 0705.1142.

[2]  Richard Swanson,et al.  The Branch Locus for One-Dimensional Pisot Tiling Spaces , 2008 .

[3]  Boris Solomyak,et al.  Pure Point Dynamical and Diffraction Spectra , 2002, 0910.4809.

[4]  Robert F. Williams Classification of one dimensional attractors , 1968 .

[5]  Dominique Perrin,et al.  The origins of combinatorics on words , 2007, Eur. J. Comb..

[6]  Yann Bugeaud,et al.  Continued fractions and transcendental numbers , 2005, math/0511682.

[7]  Jean Marie Dumont,et al.  Gaussian Asymptotic Properties of the Sum-of-Digits Function , 1997 .

[8]  A. Janner,et al.  The nature of the atomic surfaces of quasiperiodic self-similar structures , 1993 .

[9]  Harold Marston Morse Recurrent geodesics on a surface of negative curvature , 1921 .

[10]  Johannes Kellendonk,et al.  Tilings, C∗-algebras and K-theory , 2000 .

[11]  Generalized radix representations and dynamical systems III , 2008 .

[12]  V Canterini Connectedness of geometric representation of substitutions of Pisot type , 2003 .

[13]  Jean Marie Dumont,et al.  Digital sum moments and substitutions , 1993 .

[14]  Hui Rao,et al.  Atomic surfaces, tilings and coincidence I. irreducible case , 2006 .

[15]  A. Siegel,et al.  Pure discrete spectrum dynamical system and periodic tiling associated with a substitution , 2004 .

[16]  Shigeki Akiyama,et al.  Generalized radix representations and dynamical systems. I , 2005 .

[17]  Jean-Pierre Reveillès,et al.  Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .

[18]  Nhu Nguyen,et al.  The Heighway Dragon Revisited , 2003, Discret. Comput. Geom..

[19]  Pierre Arnoux,et al.  Functional stepped surfaces, flips, and generalized substitutions , 2007, Theor. Comput. Sci..

[20]  Jörg M. Thuswaldner,et al.  Canonical number systems, counting automata and fractals , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Shigeki Akiyama,et al.  Cubic Pisot units with finite beta expansions , 2004 .

[22]  V. Berthé,et al.  Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions , 2007, 0710.3584.

[23]  Valérie Berthé,et al.  Dynamical directions in numeration , 2006 .

[24]  Shin-ichi Yasutomi,et al.  On simultaneous approximation to (α,α2) with α3+kα−1=0 , 2003 .

[25]  Jean Berstel Review of "Automatic sequences: theory, applications, generalizations" by Jean-Paul Allouche and Jeffrey Shallit. Cambridge University Press. , 2004, SIGA.

[26]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[27]  Ali Messaoudi,et al.  Best simultaneous diophantine approximations of Pisot numbers and Rauzy fractals , 2006 .

[28]  Shunji Ito,et al.  Tilings from some non-irreducible, Pisot substitutions , 2005, Discret. Math. Theor. Comput. Sci..

[29]  Anne Bertrand-Mathis Développement en base $\theta $, répartition modulo un de la suite $(x\theta ^n)$, n$\ge 0$, langages codés et $\theta $-shift , 1986 .

[30]  Pierre Arnoux,et al.  Tilings, Quasicrystals, Discrete Planes, Generalized Substitutions, and Multidimensional Continued Fractions , 2001, DM-CCG.

[31]  Damien Roy Approximation to real numbers by cubic algebraic integers I , 2002 .

[32]  Sze-Man Ngai,et al.  A TECHNIQUE IN THE TOPOLOGY OF CONNECTED SELF-SIMILAR TILES , 2004 .

[33]  A. Messaoudi Propriétés arithmétiques et dynamiques du fractal de Rauzy , 1998 .

[34]  François Blanchard beta-Expansions and Symbolic Dynamics , 1989, Theor. Comput. Sci..

[35]  Yang Wang,et al.  Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .

[36]  A. Livshits COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On the spectra of adic transformations of Markov compacta , 1987 .

[37]  Benjamin Weiss,et al.  SIMILARITY OF AUTOMORPHISMS OF THE TORUS , 1970 .

[38]  Egbertus R. van Kampen,et al.  On some characterizations of $2$-dimensional manifolds , 1935 .

[39]  Marcy Barge,et al.  Coincidence for substitutions of Pisot type , 2002 .

[40]  M. Lothaire Applied Combinatorics on Words: Preface , 2005 .

[41]  K. Schmidt,et al.  On Periodic Expansions of Pisot Numbers and Salem Numbers , 1980 .

[42]  Makoto Ohtsuki,et al.  Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms , 1993 .

[43]  Anne Siegel,et al.  Représentation des systèmes dynamiques substitutifs non unimodulaires , 2003, Ergodic Theory and Dynamical Systems.

[44]  J. Thuswaldner,et al.  Interior components of a tile associated to a quadratic canonical number system , 2008 .

[45]  Enrico Bombieri,et al.  Which distributions of matter diffract? An initial investigation , 1986 .

[46]  P. Arnoux Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore , 1988 .

[47]  Richard Kenyon,et al.  Arithmetic construction of sofic partitions of hyperbolic toral automorphisms , 1998, Ergodic Theory and Dynamical Systems.

[48]  PIERRE ARNOUX,et al.  ALGEBRAIC NUMBERS AND AUTOMORPHISMS OF FREE GROUPS , 2007 .

[49]  Jun Luo,et al.  Disk-like Tiles Derived from Complex Bases , 2004 .

[50]  Clemens Fuchs,et al.  SUBSTITUTIONS, ABSTRACT NUMBER SYSTEMS AND THE SPACE FILLING PROPERTY , 2006 .

[51]  Masayoshi Hata,et al.  On the structure of self-similar sets , 1985 .

[52]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[53]  Thomas Fernique,et al.  Brun expansions of stepped surfaces , 2011, Discret. Math..

[54]  Julien Bernat,et al.  Computation of L+ for Several Cubic Pisot Numbers , 2007, Discret. Math. Theor. Comput. Sci..

[55]  Damien Roy Approximation to real numbers by cubic algebraic integers. II , 2003 .

[56]  Marcy Barge,et al.  Geometric theory of unimodular Pisot substitutions , 2006 .

[57]  Alain Thomas,et al.  Systems of numeration and fractal functions relating to substitutions (French) , 1989 .

[58]  S. Krantz Fractal geometry , 1989 .

[59]  Elise Cawley Smooth Markov partitions and toral automorphisms , 1991 .

[60]  A. Messaoudi,et al.  Frontiere du fractal de Rauzy et systeme de numeration complexe , 2000 .

[61]  Y. Bugeaud,et al.  On the complexity of algebraic numbers , II . Continued fractions by , 2006 .

[62]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[63]  Pierre Arnoux,et al.  Fractal representation of the attractive lamination of an automorphism of the free group , 2006 .

[64]  Shigeki Akiyama,et al.  Intersecting Two-Dimensional Fractals with Lines , 2005 .

[65]  Charles Radin,et al.  Space tilings and substitutions , 1995 .

[66]  Hui Rao,et al.  TOPOLOGICAL STRUCTURE OF SELF-SIMILAR SETS , 2002 .

[67]  Christoph Bandt,et al.  Classification of Self-Affine Lattice Tilings , 1994 .

[68]  V. Berthé,et al.  Purely periodic β-expansions in the Pisot non-unit case , 2007 .

[69]  H. Rao,et al.  Atomic surfaces, tilings and coincidences II. Reducible case , 2007 .

[70]  Makoto Ohtsuki,et al.  Parallelogram Tilings and Jacobi-Perron Algorithm , 1994 .

[71]  Pierre Arnoux,et al.  Geometrical Models for Substitutions , 2011, Exp. Math..

[72]  Pierre Arnoux,et al.  Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions , 2002 .

[73]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[74]  Periods of β-expansions and linear recurrent sequences , 2005 .

[75]  Dominique Perrin,et al.  Symbolic Dynamics and Finite Automata , 1997, Handbook of Formal Languages.

[76]  Thierry Coulbois,et al.  ℝ‐trees and laminations for free groups I: algebraic laminations , 2008 .

[77]  R. Daniel Mauldin,et al.  Hausdorff dimension in graph directed constructions , 1988 .

[78]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[79]  Marcy Barge,et al.  Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta $-shifts , 2006 .

[80]  Shigeki Akiyama,et al.  Pisot number system and its dual tiling , 2006 .

[81]  Cyril Allauzen Une caractérisation simple des nombres de Sturm , 1998 .

[82]  A. Messaoudi,et al.  Proprietes arithmetiques et topologiques d'une classe d'ensembles fractales , 2006 .

[83]  Sze-Man Ngai,et al.  Topology of connected self-similar tiles in the plane with disconnected interiors , 2005 .

[84]  Minako Kimura,et al.  On Rauzy fractal , 1991 .

[85]  Shigeki Akiyama,et al.  On the boundary of self affine tilings generated by Pisot numbers , 2002 .

[86]  Mladen Bestvina,et al.  Train tracks and automorphisms of free groups , 1992 .

[87]  Bart de Smit,et al.  The Fundamental Group of the Hawaiian earring is not Free , 1992, Int. J. Algebra Comput..

[88]  J. Thuswaldner,et al.  On the fundamental group of the Sierpiński-gasket , 2009 .

[89]  Klaus Schmidt,et al.  Algebraic Coding of Expansive Group Automorphisms and Two-sided Beta-Shifts , 2000 .

[90]  Thomas H. Parker,et al.  What is π , 1991 .

[91]  Shigeki Akiyama,et al.  Generalized radix representations and dynamical systems II , 2006 .

[92]  I. Putnam,et al.  Topological invariants for substitution tilings and their associated $C^\ast$-algebras , 1998, Ergodic Theory and Dynamical Systems.

[93]  Gregory R. Conner,et al.  On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane , 2005 .

[94]  Robert V. Moody,et al.  Model Sets: A Survey , 2000 .

[95]  Klaus Schmidt,et al.  MARKOV PARTITIONS AND HOMOCLINIC POINTS OF ALGEBRAICZ d -ACTIONS , 1997 .

[96]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[97]  Shigeki Akiyama,et al.  Pisot numbers and greedy algorithm , 1998 .

[98]  K. Kawamura,et al.  The fundamental groups of one-dimensional spaces , 1998 .

[99]  Jeffrey C. Lagarias,et al.  Substitution Delone Sets , 2003, Discret. Comput. Geom..

[100]  A. Mishchenko C*-Algebras and K-theory , 1979 .

[101]  A. Siegel,et al.  Geometric representation of substitutions of Pisot type , 2001 .

[102]  Rufus Bowen,et al.  Markov partitions are not smooth , 1978 .

[103]  Jun Luo,et al.  On the boundary connectedness of connected tiles , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.

[104]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[105]  Daryl Cooper,et al.  Automorphisms of free groups have finitely generated fixed point sets , 1987 .

[106]  Thomas Fernique,et al.  Generation and recognition of digital planes using multi-dimensional continued fractions , 2008, Pattern Recognit..

[107]  James W. Cannon,et al.  The combinatorial structure of the Hawaiian earring group , 2000 .

[108]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[109]  Sébastien Ferenczi,et al.  Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly , 2005 .

[110]  Boris Solomyak,et al.  Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.

[111]  Michael Handel,et al.  Laminations, trees, and irreducible automorphisms of free groups , 1997 .

[112]  Pierre Arnoux,et al.  Higher dimensional extensions of substitutions and their dual maps , 2001 .

[113]  Jörg M. Thuswaldner,et al.  Unimodular Pisot substitutions and their associated tiles , 2006 .

[114]  R. Adler,et al.  SYMBOLIC DYNAMICS AND MARKOV PARTITIONS , 1996 .

[115]  Eric Rivals,et al.  STAR: an algorithm to Search for Tandem Approximate Repeats , 2004, Bioinform..

[116]  Alan Cobham,et al.  Uniform tag sequences , 1972, Mathematical systems theory.

[117]  Maki Furukado,et al.  Pisot substitutions and the Hausdorff dimension of boundaries of atomic surfaces , 2006 .

[118]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[119]  M. Keane Interval exchange transformations , 1975 .

[120]  P. Shiue,et al.  Substitution invariant cutting sequences , 1993 .

[121]  Jörg M. Thuswaldner,et al.  On the Fundamental Group of self-affine plane Tiles , 2006 .

[122]  Jean-Pierre Gazeau,et al.  Geometric study of the beta-integers for a Perron number and mathematical quasicrystals , 2004 .

[123]  Brenda Praggastis,et al.  Numeration systems and Markov partitions from self similar tilings , 1999 .

[124]  Bruno Gaujal,et al.  ON THE OPTIMAL OPEN-LOOP CONTROL POLICY FOR DETERMINISTIC AND EXPONENTIAL POLLING SYSTEMS , 2007, Probability in the Engineering and Informational Sciences.

[125]  W. Steiner,et al.  Beta-expansions, natural extensions and multiple tilings , 2009 .

[126]  Jun Luo A NOTE ON A SELF-SIMILAR TILING GENERATED BY THE MINIMAL PISOT NUMBER , 2002 .

[127]  Valérie Berthé,et al.  Substitutions, Rauzy fractals and tilings , 2010 .

[128]  Valérie Berthé,et al.  Tilings associated with beta-numeration and substitutions. , 2005 .