Crack face contact in X‐FEM using a segment‐to‐segment approach

In this study, we propose a segment-to-segment contact formulation (mortar-based) that uses Lagrange's multipliers to establish the contact between crack faces when modeled with the extended finite element method (X-FEM) in 2D problems. It is shown that, in general, inaccuracies arise when the contact is formulated following a point-to-point approach. This is due to the non-linear character of the X-FEM interpolation along the crack faces that leads to crack face interpenetration. However, the segment-to-segment approach optimizes the fulfilment of the contact constraints along the whole crack segment, and in practice the contact is modeled precisely. Convergence studies for mesh sequences have been performed, showing the advantages of the proposed methodology. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[2]  Tae-Yeon Kim,et al.  A mortared finite element method for frictional contact on arbitrary interfaces , 2006 .

[3]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[4]  Patrick Hild,et al.  Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .

[5]  Ronaldo I. Borja,et al.  A contact algorithm for frictional crack propagation with the extended finite element method , 2008 .

[6]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[7]  M. W. Brown,et al.  A REVIEW OF FATIGUE CRACK GROWTH IN STEELS UNDER MIXED MODE I AND II LOADING , 1992 .

[8]  Samuel Geniaut,et al.  A stable 3D contact formulation using X-FEM , 2007 .

[9]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[10]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .

[11]  Ted Belytschko,et al.  Dislocations by partition of unity , 2005 .

[12]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[13]  P. Wriggers,et al.  A mortar-based frictional contact formulation for large deformations using Lagrange multipliers , 2009 .

[14]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[15]  Anthony Gravouil,et al.  A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method , 2007 .

[16]  C. Qian,et al.  Fatigue crack growth under mode II loading , 1995 .

[17]  Nicolas Moës,et al.  Imposing Dirichlet boundary conditions in the extended finite element method , 2006 .

[18]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[19]  Samuel Geniaut,et al.  An X‐FEM approach for large sliding contact along discontinuities , 2009 .

[20]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .

[21]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[22]  Amir R. Khoei,et al.  An enriched finite element algorithm for numerical computation of contact friction problems , 2007 .

[23]  A. Combescure,et al.  A mixed augmented Lagrangian‐extended finite element method for modelling elastic–plastic fatigue crack growth with unilateral contact , 2007 .

[24]  Eugenio Giner,et al.  An Abaqus implementation of the extended finite element method , 2009 .

[25]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .