An Adjoint-based Derivative Evaluation Method for Time-dependent Aeroelastic Optimization of Flexible Aircraft

The goal of this paper is to develop techniques to enable the use of aeroelastic constraints within a high-fidelity design optimization framework. As a first-step towards this goal we have developed a fully-coupled aeroelastic analysis tool that includes a coupled structural and aerodynamic analysis as well as rigid-body degrees of freedom. This work departs from previous efforts in two important ways: first, we use solution techniques that are tailored for high-performance parallel computing; second, we implement a fully-coupled adjoint method using a coupled-Krylov approach for the evaluation of derivatives of time-dependent functions of interest. The coupled Newton‐Krylov approach enables us to perform simulations in the full structural space without modal reduction. The timedependent adjoint approach enables us to evaluate the gradient of functions of interest for cases with hundreds or thousands of design variables in a cost similar to the time-dependent simulation. In order to demonstrate our framework, we verify the gradient accuracy of some preliminary simulations of three transport aircraft wings with increasing span subject to gust loads.

[1]  Antony Jameson,et al.  Optimal Control of Unsteady Flows Using Time Accurate and Non-Linear Frequency Domain Methods , 2003 .

[2]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[3]  Mark Drela,et al.  INTEGRATED SIMULATION MODEL FOR PRELIMINARY AERODYNAMIC, STRUCTURAL, AND CONTROL-LAW DESIGN OF AIRCRAFT , 1999 .

[4]  Carlos E. S. Cesnik,et al.  Trajectory Control for Very Flexible Aircraft , 2006 .

[5]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[6]  Carlos E. S. Cesnik,et al.  Flapping Wing CFD/CSD Aeroelastic Formulation Based on a Co- rotational Shell Finite Element , 2009 .

[7]  David W. Zingg,et al.  A hybrid algorithm for far-field noise minimization , 2010 .

[8]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[9]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[10]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[11]  Carlos E. S. Cesnik,et al.  Nonlinear Flight Dynamics of Very Flexible Aircraft , 2005 .

[12]  Graeme J. Kennedy,et al.  The hybrid-adjoint method: a semi-analytic gradient evaluation technique applied to composite cure cycle optimization , 2010 .

[13]  Joaquim R. R. A. Martins,et al.  Parallel Solution Methods for Aerostructural Analysis and Design Optimization , 2010 .

[14]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[15]  Stephen C. Smith A Computational and Experimental Study of Nonlinear Aspects of Induced Drag , 1996 .

[16]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[17]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[18]  J. C. Simo,et al.  A drill rotation formulation for geometrically exact shells , 1992 .

[19]  C. Mader,et al.  Derivatives for Time-Spectral Computational Fluid Dynamics Using an Automatic Differentiation Adjoint , 2012 .

[20]  S. Brown,et al.  Displacement extrapolations for CFD+CSM aeroelastic analysis , 1997 .

[21]  Joaquim R. R. A. Martins,et al.  A Comparison of Metallic and Composite Aircraft Wings Using Aerostructural Design Optimization , 2012 .

[22]  Antony Jameson,et al.  OPTIMAL CONTROL OF UNSTEADY FLOWS USING A TIME ACCURATE METHOD , 2002 .

[23]  Joaquim R. R. A. Martins,et al.  Aeroservoelastic Design Optimization of a Flexible Wing , 2012 .

[24]  Gregory A. Wrenn,et al.  An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function , 1989 .

[25]  M. Rumpfkeil,et al.  The optimal control of unsteady flows with a discrete adjoint method , 2010 .

[26]  Ruben E. Perez,et al.  Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach , 2011 .

[27]  Ilan Kroo,et al.  Stochastic Gust Analysis Techniques for Aircraft Conceptual Design , 2008 .

[28]  Joaquim R. R. A. Martins,et al.  Multi-point, multi-mission, high-fidelity aerostructural optimization of a long-range aircraft configuration , 2012 .

[29]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[30]  L. Meirovitch,et al.  Hybrid equations of motion for flexible multibody systems using quasicoordinates , 1995 .

[31]  Justín Murín,et al.  On Drilling Degrees of Freedom , 2011 .

[32]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[33]  Joaquim R. R. A. Martins,et al.  An adaptive approach to constraint aggregation using adjoint sensitivity analysis , 2007 .

[34]  J. Hess,et al.  Calculation of potential flow about arbitrary bodies , 1967 .

[35]  Joaquim R. R. A. Martins,et al.  Model-Predictive Gust Load Alleviation Controller for a Highly Flexible Aircraft , 2012 .