A Geometric Space-Time Multigrid Algorithm for the Heat Equation

We study the time-dependent heat equation on its space-time domain that is discretised by a k-spacetree. k-spacetrees are a generalisation of the octree concept and are a discretisation paradigm yielding a multiscale representation of dynamically adaptive Cartesian grids with low memory footprint. The paper presents a full approx- imation storage geometric multigrid implementation for this setting that combines the smoothing properties of multigrid for the equation's elliptic operator with a multiscale solution propagation in time. While the runtime and memory overhead for tackling the all-in-one space-time problem is bounded, the holistic approach promises to exhibit a better parallel scalability than classical time stepping, adaptive dynamic refinement in space and time fall naturally into place, as well as the treatment of periodic boundary conditions of steady cycle systems, on-time computational steering is eased as the algo- rithm delivers guesses for the solution's long-term behaviour immediately, and, finally, backward problems arising from the adjoint equation benefit from the the solution being available for any point in space and time.

[1]  Stefan Vandewalle,et al.  Multigrid Waveform Relaxation on Spatial Finite Element Meshes: The Discrete-Time Case , 1996, SIAM J. Sci. Comput..

[2]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[3]  Stefan Ulbrich,et al.  Advanced Numerical Methods for PDE Constrained Optimization with Application to Optimal Design in Navier Stokes Flow , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[4]  Miriam Mehl,et al.  Peano - A Traversal and Storage Scheme for Octree-Like Adaptive Cartesian Multiscale Grids , 2011, SIAM J. Sci. Comput..

[5]  Stephen F. McCormick,et al.  Multilevel adaptive methods for partial differential equations , 1989, Frontiers in applied mathematics.

[6]  Marjorie A. McClain,et al.  A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2011 .

[7]  H. van der Ven,et al.  An adaptive multitime multigrid algorithm for time-periodic flow simulations , 2008, J. Comput. Phys..

[8]  Arvin W. Hahn REPORT TO THE PRESIDENT , 1964 .

[9]  Martin J. Gander,et al.  On the Superlinear and Linear Convergence of the Parareal Algorithm , 2007, CSE 2007.

[10]  Michael Griebel,et al.  Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen , 1994 .

[11]  Stefan Vandewalle,et al.  Multigrid waveform relaxation on spatial finite element meshes , 1996 .

[12]  Wolfgang Hackbusch,et al.  Parabolic multi-grid methods , 1985 .

[13]  Michael Griebel,et al.  Zur Lösung von Finite-Differenzen-und Finite-Element-Gleichungen mittels der Hierarchischen-Transformations-Mehrgitter-Methode - Sonderforschungsbericht 342: Methoden und Werkzeuge für die Nutzung paralleler Rechnerarchitekturen , 1990, TUM-I.

[14]  Graham Horton,et al.  The time‐parallel multigrid method , 1992 .

[15]  Jack Dongarra,et al.  Computational Science: Ensuring America's Competitiveness , 2005 .

[16]  G. Horton,et al.  A Space-time Multigrid Method for Parabolic Pdes , 1993 .

[17]  Michael Griebel,et al.  A sparse grid space-time discretization scheme for parabolic problems , 2007, Computing.

[18]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[19]  Tobias Weinzierl,et al.  A Framework for Parallel PDE Solvers on Multiscale Adaptive Cartesian Grids , 2009 .

[20]  Alfio Borzì,et al.  Multigrid methods for parabolic distributed optimal control problems , 2003 .

[21]  David E Womble A Time-Stepping Algorithm for Parallel Computers , 1990, SIAM J. Sci. Comput..

[22]  J. Dendy Black box multigrid , 1982 .