Probabilistic Disambiguation Models for Wide-Coverage HPSG Parsing

This paper reports the development of log-linear models for the disambiguation in wide-coverage HPSG parsing. The estimation of log-linear models requires high computational cost, especially with wide-coverage grammars. Using techniques to reduce the estimation cost, we trained the models using 20 sections of Penn Tree-bank. A series of experiments empirically evaluated the estimation techniques, and also examined the performance of the disambiguation models on the parsing of real-world sentences.

[1]  Miles Osborne,et al.  Estimation of Stochastic Attribute-Value Grammars using an Informative Sample , 2000, COLING.

[2]  Robert Malouf,et al.  Wide Coverage Parsing with Stochastic Attribute Value Grammars , 2004 .

[3]  S.J.J. Smith,et al.  Empirical Methods for Artificial Intelligence , 1995 .

[4]  Mark Johnson,et al.  Exploiting auxiliary distributions in stochastic unification-based grammars , 2000, ANLP.

[5]  Tsujii Jun'ichi,et al.  Maximum entropy estimation for feature forests , 2002 .

[6]  Stephan Oepen,et al.  Collaborative language engineering : a case study in efficient grammar-based processing , 2002 .

[7]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[8]  Steven P. Abney Stochastic Attribute-Value Grammars , 1996, CL.

[9]  Ivan A. Sag,et al.  Book Reviews: Head-driven Phrase Structure Grammar and German in Head-driven Phrase-structure Grammar , 1996, CL.

[10]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[11]  Jason Baldridge,et al.  Active learning for HPSG parse selection , 2003, CoNLL.

[12]  Thorsten Brants,et al.  The LinGO Redwoods Treebank: Motivation and Preliminary Applications , 2002, COLING.

[13]  Jun'ichi Tsujii,et al.  Corpus-Oriented Grammar Development for Acquiring a Head-Driven Phrase Structure Grammar from the Penn Treebank , 2004, IJCNLP.

[14]  Ben Taskar,et al.  Max-Margin Parsing , 2004, EMNLP.

[15]  Mark Johnson,et al.  Dynamic programming for parsing and estimation of stochastic unification-based grammars , 2002, ACL.

[16]  Rob Malouf,et al.  A Comparison of Algorithms for Maximum Entropy Parameter Estimation , 2002, CoNLL.

[17]  Yusuke Miyao,et al.  Probabilistic modeling of argument structures including non-local dependencies , 2003 .

[18]  Ann Bies,et al.  The Penn Treebank: Annotating Predicate Argument Structure , 1994, HLT.

[19]  Mark Johnson,et al.  Parsing the Wall Street Journal using a Lexical-Functional Grammar and Discriminative Estimation Techniques , 2002, ACL.

[20]  James R. Curran,et al.  Parsing the WSJ Using CCG and Log-Linear Models , 2004, ACL.

[21]  Stefan Riezler,et al.  Speed and Accuracy in Shallow and Deep Stochastic Parsing , 2004, NAACL.

[22]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[23]  Mark Johnson,et al.  Estimators for Stochastic “Unification-Based” Grammars , 1999, ACL.

[24]  James R. Curran,et al.  The Importance of Supertagging for Wide-Coverage CCG Parsing , 2004, COLING.

[25]  Christopher D. Manning,et al.  The Leaf Projection Path View of Parse Trees: Exploring String Kernels for HPSG Parse Selection , 2004 .

[26]  Stanley F. Chen,et al.  A Gaussian Prior for Smoothing Maximum Entropy Models , 1999 .

[27]  Christopher D. Manning,et al.  Feature Selection for a Rich HPSG Grammar Using Decision Trees , 2002, CoNLL.