Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes

Vanadium oxides may offer high pseudocapacitance but limited electrical conductivity and specific surface area. Atomic layer deposition allowed uniform deposition of smooth nanostructured vanadium oxide coatings on the surface of multi-walled carbon nanotube (MWCNT) electrodes, thus offering a novel route for the formation of binder-free flexible composite electrode fabric for supercapacitor applications with large thickness, controlled porosity, greatly improved electrical conductivity and cycle stability. Electrochemical measurements revealed stable performance of the selected MWCNT–vanadium oxide electrodes and remarkable capacitance of up to ∼1550 F g−1 per active mass of the vanadium oxide and up to ∼600 F g−1 per mass of the composite electrode, significantly exceeding specific capacitance of commercially used activated carbons (100–150 F g−1). Electrochemical performance of the oxide layers was found to strongly depend on the coating thickness.

[1]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[2]  Lu Wei,et al.  Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes , 2011 .

[3]  Chao-Ming Huang,et al.  Pseudocapacitive Characteristics of Vanadium Oxide Deposits with a Three-Dimensional Porous Structure , 2009 .

[4]  E. Frąckowiak,et al.  Carbon nanotubes and their composites in electrochemical applications , 2011 .

[5]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[6]  Giovanni Neri,et al.  Vanadium oxide sensing layer grown on carbon nanotubes by a new atomic layer deposition process. , 2008, Nano letters.

[7]  C. E. Tracy,et al.  RAMAN SPECTROSCOPIC STUDIES OF AMORPHOUS VANADIUM OXIDE THIN FILMS , 2003 .

[8]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[9]  Y. Gogotsi,et al.  Raman scattering of non–planar graphite: arched edges, polyhedral crystals, whiskers and cones , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[11]  R. Reddy,et al.  Porous structured vanadium oxide electrode material for electrochemical capacitors , 2006 .

[12]  S. Tolbert,et al.  The Relationship Between Nanoscale Structure and Electrochemical Properties of Vanadium Oxide Nanorolls , 2004 .

[13]  Alexander Kvit,et al.  Tailoring the pore alignment for rapid ion transport in microporous carbons. , 2010, Journal of the American Chemical Society.

[14]  Xing Xie,et al.  Paper supercapacitors by a solvent-free drawing method† , 2011 .

[15]  Stefan Kaskel,et al.  Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. , 2011, Small.

[16]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[17]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[18]  Genevieve Dion,et al.  Carbon coated textiles for flexible energy storage , 2011 .

[19]  Yury Gogotsi,et al.  Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors , 2007 .

[20]  Jun Chen,et al.  Compact-designed supercapacitors using free-standing single-walled carbon nanotube films , 2011 .

[21]  T. Do,et al.  Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[22]  G. Yushin,et al.  Effect of Carbon Particle Size on Electrochemical Performance of EDLC , 2008 .

[23]  J. Velázquez,et al.  A VO-seeded approach for the growth of star-shaped VO2 and V2O5 nanocrystals: facile synthesis, structural characterization, and elucidation of electronic structure , 2011 .

[24]  J. S. Anderson,et al.  Phase equilibria in the vanadium-oxygen system , 1970 .

[25]  Xuelong Wang,et al.  XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering , 2001 .

[26]  D. Lincot,et al.  Amorphous vanadium oxide films synthesised by ALCVD for lithium rechargeable batteries , 2006 .

[27]  François Béguin,et al.  Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations , 2005 .

[28]  Wen Chen,et al.  Synthesis and characterization of VO2/mesoporous carbon composites for hybrid capacitors , 2010 .

[29]  Jae Hyun Kim,et al.  Synthesis and Electrochemical Characterization of Vanadium Oxide on Carbon Nanotube Film Substrate for Pseudocapacitor Applications , 2006 .

[30]  Ray H. Baughman,et al.  Electrochemical studies of single-wall carbon nanotubes in aqueous solutions , 2000 .

[31]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[32]  A. B. Fuertes,et al.  Polypyrrole‐Derived Activated Carbons for High‐Performance Electrical Double‐Layer Capacitors with Ionic Liquid Electrolyte , 2012 .

[33]  G. Yushin,et al.  Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube – Enabled Architecture , 2012, Advanced materials.

[34]  Alexander Kvit,et al.  High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. , 2010, ACS nano.

[35]  Antonio B. Fuertes,et al.  Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High‐Performance Supercapacitor Electrodes , 2011 .

[36]  Pierre-Louis Taberna,et al.  Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications , 2004 .

[37]  B. Dunn,et al.  Electrochemical Properties of Vanadium Oxide Aerogels and Aerogel Nanocomposites , 2003 .

[38]  Gleb Yushin,et al.  Detonation Nanodiamond and Onion‐Like‐Carbon‐Embedded Polyaniline for Supercapacitors , 2010 .

[39]  John P. Ferraris,et al.  Vanadium Oxide Nanowire–Carbon Nanotube Binder‐Free Flexible Electrodes for Supercapacitors , 2011 .

[40]  Jim P. Zheng,et al.  A New Charge Storage Mechanism for Electrochemical Capacitors , 1995 .

[41]  B. Dunn,et al.  High‐Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites , 2011, Advanced materials.

[42]  B. Dunn,et al.  Synthesis and Electrochemical Properties of Vanadium Oxide Aerogels Prepared by a Freeze-Drying Process , 2004 .

[43]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[44]  Sehee Lee,et al.  Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li‐Ion Batteries , 2010, Advanced materials.

[45]  Pierre-Louis Taberna,et al.  Modification of Al Current Collector/Active Material Interface for Power Improvement of Electrochemical Capacitor Electrodes , 2006 .

[46]  Thomsen,et al.  Double resonant raman scattering in graphite , 2000, Physical review letters.

[47]  Bei Wang,et al.  Synthesis of nanosized vanadium pentoxide/carbon composites by spray pyrolysis for electrochemical capacitor application , 2009 .

[48]  Bruce Dunn,et al.  Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels , 1999 .

[49]  Yury Gogotsi,et al.  Effect of pore size and surface area of carbide derived carbons on specific capacitance , 2006 .

[50]  Huakun Liu,et al.  Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors , 2006 .

[51]  Bruce Dunn,et al.  Electrically conductive oxide aerogels: newmaterials in electrochemistry , 2001 .

[52]  Erik J. Brandon,et al.  In Situ Studies of Ion Transport in Microporous Supercapacitor Electrodes at Ultralow Temperatures , 2012 .

[53]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.