Domain Decomposition for the Closest Point Method

The discretization of elliptic PDEs leads to large coupled systems of equations. Domain decomposition methods (DDMs) are one approach to the solution of these systems, and can split the problem in a way that allows for parallel computing. Herein, we extend two DDMs to elliptic PDEs posed intrinsic to surfaces as discretized by the Closest Point Method (CPM) \cite{SJR:CPM,CBM:ICPM}. We consider the positive Helmholtz equation $\left(c-\Delta_\mathcal{S}\right)u = f$, where $c\in\mathbb{R}^+$ is a constant and $\Delta_\mathcal{S}$ is the Laplace-Beltrami operator associated with the surface $\mathcal{S}\subset\mathbb{R}^d$. The evolution of diffusion equations by implicit time-stepping schemes and Laplace-Beltrami eigenvalue problems \cite{CBM:Eig} both give rise to equations of this form. The creation of efficient, parallel, solvers for this equation would ease the investigation of reaction-diffusion equations on surfaces \cite{CBM:RDonPC}, and speed up shape classification \cite{Reuter:ShapeDNA}, to name a couple applications.

[1]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[2]  Ian May Domain decomposition solvers and preconditioners for the implicit closest point method , 2018 .

[3]  Martin J. Gander,et al.  Best Robin Parameters for Optimized Schwarz Methods at Cross Points , 2012, SIAM J. Sci. Comput..

[4]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[5]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[6]  Martin J. Gander,et al.  Optimized Multiplicative, Additive, and Restricted Additive Schwarz Preconditioning , 2007, SIAM J. Sci. Comput..

[7]  Colin B. Macdonald,et al.  The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..

[8]  Colin B. Macdonald,et al.  Solving eigenvalue problems on curved surfaces using the Closest Point Method , 2011, J. Comput. Phys..

[9]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[10]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[11]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[12]  R. Tsai,et al.  Volumetric variational principles for a class of partial differential equations defined on surfaces and curves , 2017, Research in the Mathematical Sciences.

[13]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[14]  Barry F. Smith,et al.  PETSc Users Manual , 2019 .

[15]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[16]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[17]  Colin B. Macdonald,et al.  The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces , 2013, SIAM J. Sci. Comput..

[18]  Steven J. Ruuth,et al.  Simple computation of reaction–diffusion processes on point clouds , 2013, Proceedings of the National Academy of Sciences.

[19]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[20]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[21]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..