Avalanche photodiode image sensor in standard silicon BiCMOS technology

Abstract To overcome the transistor-induced noise limitations of solid state image sensors at low light levels, we investigate a programmable camera concept based on an image sensor that employs the avalanche effect for photogenerated charge carriers. Each pixel consists of an avalanche photodiode (APD), high-voltage stabilization circuitry and image readout electronics. Special emphasis is placed on the integration and characterization of such an APD image sensor with an unmodified, commercially available silicon BiCMOS process. Experimental results of the first APD camera in BiCMOS technology with 12×24 pixels show individually programmable, stable diode gain up to a factor of 1000.

[1]  James R. Janesick,et al.  800 X 800 Charge-Coupled Device Image Sensor , 1983 .

[2]  M. Szawlowski,et al.  Large-area avalanche photodiodes challenge PMTs , 1998 .

[3]  O. Vietze Active pixel image sensors with application specific performance based on standard silicon CMOS processes , 1997 .

[4]  Eric R. Fossum,et al.  CMOS image sensors: electronic camera-on-a-chip , 1997 .

[5]  Peter Seitz Solid-State Image Sensing , 2000, Computer Vision and Applications.

[6]  Gregory J. Sonek,et al.  Hot carrier induced bipolar transistor degradation due to base dopant compensation by hydrogen: theory and experiment , 1994 .

[7]  P. Seitz,et al.  Practical Si LED's with standard CMOS technology , 1998, Proceedings IEEE Southeastcon '98 'Engineering for a New Era'.

[8]  A. D. Lucas Epitaxial silicon avalanche photodiode , 1974 .

[9]  Qiuting Huang,et al.  A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors , 1997 .

[10]  R. Mcintyre,et al.  Avalanche photodiode thirty-two-element linear array with minimal dead space. , 1987, Applied optics.

[11]  R. A. Logan,et al.  Ionization Rates of Holes and Electrons in Silicon , 1964 .

[12]  L. P. Hsu,et al.  Temperature dependence of breakdown voltage in silicon abrupt p-n junctions , 1971 .

[13]  J. Vukusic Optical Fiber Communications: Principles and Practice , 1986 .

[14]  H. Melchior,et al.  Atlanta fiber system experiment: Planar epitaxial silicon avalanche photodiode , 1978, The Bell System Technical Journal.

[15]  R. Haitz,et al.  Variation of Junction Breakdown Voltage by Charge Trapping , 1965 .

[16]  Bart Dierickx,et al.  Random addressable active pixel image sensors , 1996, Advanced Imaging and Network Technologies.

[17]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[18]  M. Ghioni,et al.  Integrated array of avalanche photodiodes for single-photon counting , 1997, 27th European Solid-State Device Research Conference.

[19]  Jerald Graeme,et al.  Photodiode Amplifiers: OP AMP Solutions , 1995 .

[20]  B. Hochet,et al.  50-V LCD driver integrated in standard 5-V CMOS process , 1994, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '94.

[21]  H. Melchior,et al.  Signal and noise response of high speed germanium avalanche photodiodes , 1966 .

[22]  Sunetra K. Mendis,et al.  A 128/spl times/128 CMOS active pixel image sensor for highly integrated imaging systems , 1993, Proceedings of IEEE International Electron Devices Meeting.

[23]  Daniel P. Foty,et al.  MOSFET Modeling With SPICE: Principles and Practice , 1996 .

[24]  R. Popovic,et al.  A silicon blue/UV selective stripe-shaped photodiode , 1999 .

[25]  E. Fossum,et al.  CMOS active pixel image sensors for highly integrated imaging systems , 1997, IEEE J. Solid State Circuits.

[26]  Gregory J. Sonek,et al.  New degradation mechanism associated with hydrogen in bipolar transistors under hot carrier stress , 1993 .

[27]  S. Sze,et al.  AVALANCHE BREAKDOWN VOLTAGES OF ABRUPT AND LINEARLY GRADED p‐n JUNCTIONS IN Ge, Si, GaAs, AND GaP , 1966 .

[28]  Thomas Spirig,et al.  Smart CCD/CMOS based image sensors with programmable, real-time, temporal and spatial convolution capabilities for applications in machine vision and optical metrology , 1997 .