Acetyl-methyllysine marks chromatin at active transcription start sites

[1]  M. Simon,et al.  bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with Bayesian hierarchical modeling , 2023, RNA.

[2]  Nan Wang,et al.  Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome , 2022, Nature Methods.

[3]  Shinya Oki,et al.  ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data , 2022, Nucleic Acids Res..

[4]  J. Steitz,et al.  STL-seq reveals pause-release and termination kinetics for promoter-proximal paused RNA polymerase II transcripts. , 2021, Molecular cell.

[5]  Delphine Pflieger,et al.  Small Mass but Strong Information: Diagnostic Ions Provide Crucial Clues to Correctly Identify Histone Lysine Modifications , 2021, Proteomes.

[6]  J. Loo,et al.  Leveraging Immonium Ions for Targeting Acyl‐Lysine Modifications in Proteomic Datasets , 2020, Proteomics.

[7]  P. Cole,et al.  The Chemical Biology of Reversible Lysine Post-translational Modifications. , 2020, Cell chemical biology.

[8]  Lea Kiefer,et al.  Enhanced nucleotide chemistry and toehold nanotechnology reveals lncRNA spreading on chromatin , 2020, Nature Structural & Molecular Biology.

[9]  L. Lam,et al.  Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer , 2020, Nature.

[10]  Ming-Ming Zhou,et al.  Bromodomain biology and drug discovery , 2019, Nature Structural & Molecular Biology.

[11]  G. Leone,et al.  The broken cycle: E2F dysfunction in cancer , 2019, Nature Reviews Cancer.

[12]  Diana Domanska,et al.  Coloc-stats: a unified web interface to perform colocalization analysis of genomic features , 2018, Nucleic Acids Res..

[13]  Meaghan C. Sullivan,et al.  TimeLapse-seq: Adding a temporal dimension to RNA sequencing through nucleoside recoding , 2018, Nature Methods.

[14]  Chunaram Choudhary,et al.  Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours , 2017, Nature.

[15]  C. Allis,et al.  The molecular hallmarks of epigenetic control , 2016, Nature Reviews Genetics.

[16]  B. Garcia,et al.  Complete Workflow for Analysis of Histone Post-translational Modifications Using Bottom-up Mass Spectrometry: From Histone Extraction to Data Analysis , 2016, Journal of visualized experiments : JoVE.

[17]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[18]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[19]  Fabiana M. Duarte,et al.  Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation. , 2016, Molecular cell.

[20]  R. Marmorstein,et al.  Molecular Basis for Histone Acetyltransferase Regulation by Binding Partners, Associated Domains, and Autoacetylation. , 2016, ACS chemical biology.

[21]  M. Waters,et al.  Molecular Recognition of Lys and Arg Methylation. , 2016, ACS chemical biology.

[22]  M. Gerstein,et al.  Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry. , 2015, Molecular cell.

[23]  M. Staňková,et al.  Monoclonal 1- and 3-Phosphohistidine Antibodies: New Tools to Study Histidine Phosphorylation , 2015, Cell.

[24]  M. Höss,et al.  Small molecule inhibitors of bromodomain-acetyl-lysine interactions. , 2015, ACS chemical biology.

[25]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[26]  Manuel M Müller,et al.  Histones: At the Crossroads of Peptide and Protein Chemistry , 2014, Chemical reviews.

[27]  A. Quinlan BEDTools: The Swiss‐Army Tool for Genome Feature Analysis , 2014, Current protocols in bioinformatics.

[28]  A. Fujiyama,et al.  Histone H4 Lys 20 Monomethylation of the CENP-A Nucleosome Is Essential for Kinetochore Assembly , 2014, Developmental cell.

[29]  Laura J. Scott,et al.  ChIP-Enrich: gene set enrichment testing for ChIP-seq data , 2014, Nucleic acids research.

[30]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[31]  M. Tolstorukov,et al.  Multiplexed Illumina sequencing libraries from picogram quantities of DNA , 2013, BMC Genomics.

[32]  G. Schotta,et al.  Histone H4 Lysine 20 methylation: key player in epigenetic regulation of genomic integrity , 2013, Nucleic acids research.

[33]  K. Huberman,et al.  Characterisation of a Tip60 Specific Inhibitor, NU9056, in Prostate Cancer , 2012, PloS one.

[34]  Stefan Knapp,et al.  The bromodomain interaction module , 2012, FEBS letters.

[35]  A. Gingras,et al.  Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family , 2012, Cell.

[36]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[37]  Benjamin A. Garcia,et al.  Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses , 2012, Nature Structural &Molecular Biology.

[38]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[39]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[40]  T. Umehara,et al.  Structural implications for K5/K12‐di‐acetylated histone H4 recognition by the second bromodomain of BRD2 , 2010, FEBS letters.

[41]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[42]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.

[43]  Shigeyuki Yokoyama,et al.  Structural Basis for Acetylated Histone H4 Recognition by the Human BRD2 Bromodomain* , 2010, The Journal of Biological Chemistry.

[44]  J. Chin,et al.  Genetically encoding N(epsilon)-methyl-L-lysine in recombinant histones. , 2009, Journal of the American Chemical Society.

[45]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[46]  K. Shokat,et al.  The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure , 2008, Nature Structural &Molecular Biology.

[47]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[48]  S. J. Flint,et al.  The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. , 2008, Molecular cell.

[49]  Shaomeng Wang,et al.  Design and characterization of bivalent Smac-based peptides as antagonists of XIAP and development and validation of a fluorescence polarization assay for XIAP containing both BIR2 and BIR3 domains. , 2008, Analytical biochemistry.

[50]  Yi Tang,et al.  Lysine Propionylation and Butyrylation Are Novel Post-translational Modifications in Histones*S , 2007, Molecular & Cellular Proteomics.

[51]  Scott A. Busby,et al.  Chemical derivatization of histones for facilitated analysis by mass spectrometry , 2007, Nature Protocols.

[52]  J. Wysocka Identifying novel proteins recognizing histone modifications using peptide pull-down assay. , 2006, Methods.

[53]  Jean Martínez,et al.  Methods and protocols of modern solid phase peptide synthesis , 2006, Molecular biotechnology.

[54]  M. Pazin,et al.  Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions , 2006, Science.

[55]  J. Vandenhaute,et al.  Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe , 2005, Yeast.

[56]  W Bruce Turnbull,et al.  On the value of c: can low affinity systems be studied by isothermal titration calorimetry? , 2003, Journal of the American Chemical Society.

[57]  R. Houghten,et al.  Identification of B Cell and T Cell Epitopes Using Synthetic Peptide Combinatorial Libraries , 2001, Current protocols in immunology.

[58]  E. Nicolas,et al.  The histone deacetylase HDAC3 targets RbAp48 to the retinoblastoma protein. , 2001, Nucleic acids research.

[59]  J. Workman,et al.  Preparation of Nuclear and Cytoplasmic Extracts from Mammalian Cells , 2001, Current protocols in pharmacology.

[60]  D. Dean,et al.  Rb Interacts with Histone Deacetylase to Repress Transcription , 1998, Cell.

[61]  L. Magnaghi-Jaulin,et al.  Retinoblastoma protein represses transcription by recruiting a histone deacetylase , 1998, Nature.

[62]  Tony Kouzarides,et al.  Retinoblastoma protein recruits histone deacetylase to repress transcription , 1998, Nature.

[63]  A. Mirsky,et al.  ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[64]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[65]  R. Stark,et al.  DiffBind : Differential binding analysis of ChIP-Seq peak data , 2012 .

[66]  T. Megraw,et al.  RNAi in cultured Drosophila cells. , 2004, Methods in molecular biology.

[67]  Karen N. Allen,et al.  research papers Acta Crystallographica Section D Biological , 2003 .

[68]  Bernhard Rupp,et al.  Correspondence e-mail: , 2000 .