Tomographic Approach for Universal Tactile Imaging With Electromechanically Coupled Conductors

In this paper, we propose a novel, low-cost, and universal tactile sensing technology for imaging pressure distribution using a tomographic approach with conductors. In particular, we focus on the fact that pressure is related to the contact resistance between two conductive objects. The sensor comprises driving and probing conductors, which are electromechanically coupled. The system solves an inverse problem for estimating electrical boundary conditions using the voltage sets from electrodes on the border of the probing conductor. The sensing system successfully estimates the pressure distribution, contact location (error rate: 5.68 <inline-formula><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 2.78%), and local pressure (error in the range 0.0269 <inline-formula><tex-math notation="LaTeX">$ -$</tex-math></inline-formula>0.0509 N/mm<inline-formula><tex-math notation="LaTeX">$^2$</tex-math></inline-formula> for a maximum pressure of 0.50 N/mm<inline-formula><tex-math notation="LaTeX">$^2$</tex-math></inline-formula>). Finally, tactile imaging by sheet- and finger-type sensors are demonstrated as practical applications of the developed sensor.

[1]  Helge J. Ritter,et al.  Flexible and stretchable fabric-based tactile sensor , 2015, Robotics Auton. Syst..

[2]  Nigel H. Lovell,et al.  A review of tactile sensing technologies with applications in biomedical engineering , 2012 .

[3]  Robert D. Howe,et al.  Tactile sensing and control of robotic manipulation , 1993, Adv. Robotics.

[4]  Koichiro Deguchi,et al.  Precise Shape Reconstruction by Active Pattern in Total-Internal-Reflection-Based Tactile Sensor , 2014, IEEE Transactions on Haptics.

[5]  Edward H. Adelson,et al.  Measurement of shear and slip with a GelSight tactile sensor , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[6]  M. Shimojo,et al.  A High-Speed Mesh of Tactile Sensors Fitting Arbitrary Surfaces , 2010, IEEE Sensors Journal.

[7]  Yimin D. Zhang,et al.  Image Reconstruction in Electrical Impedance Tomography Based on Structure-Aware Sparse Bayesian Learning , 2018, IEEE Transactions on Medical Imaging.

[8]  Veronica J. Santos,et al.  Biomimetic Tactile Sensor Array , 2008, Adv. Robotics.

[9]  Samia Nefti-Meziani,et al.  A Quantitative Evaluation of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors , 2017, Sensors.

[10]  Soo-Jin Lee,et al.  Current hand exoskeleton technologies for rehabilitation and assistive engineering , 2012 .

[11]  A Adler,et al.  Objective selection of hyperparameter for EIT , 2006, Physiological measurement.

[12]  Jan Peirs,et al.  A micro optical force sensor for force feedback during minimally invasive robotic surgery , 2003 .

[13]  David Isaacson,et al.  Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.

[14]  Osamu Oshiro,et al.  Unobtrusive tactile sensing based on electromechanical boundary estimation , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[15]  Gierad Laput,et al.  Electrick: Low-Cost Touch Sensing Using Electric Field Tomography , 2017, CHI.

[16]  Marc O Schurr,et al.  Review on aspects of artificial tactile feedback in laparoscopic surgery. , 2009, Medical engineering & physics.

[17]  Kaspar Althoefer,et al.  Tactile sensing for dexterous in-hand manipulation in robotics-A review , 2011 .

[18]  Aaron D. Mazzeo,et al.  Paper‐Based, Capacitive Touch Pads , 2012, Advanced materials.

[19]  Bin Li,et al.  Mechanical Imaging of Soft Tissues With a Highly Compliant Tactile Sensing Array , 2018, IEEE Transactions on Biomedical Engineering.

[20]  Naoki Kawakami,et al.  Evaluation of a vision-based tactile sensor , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[21]  Andy Adler,et al.  Electrical impedance tomography: regularized imaging and contrast detection , 1996, IEEE Trans. Medical Imaging.

[22]  Z. Prete,et al.  A novel pressure array sensor based on contact resistance variation: Metrological properties , 2001 .

[23]  William R B Lionheart EIT reconstruction algorithms: pitfalls, challenges and recent developments. , 2004, Physiological measurement.

[24]  Giulio Sandini,et al.  Tactile Sensing—From Humans to Humanoids , 2010, IEEE Transactions on Robotics.

[25]  Y. Kato,et al.  Tactile Sensor without Wire and Sensing Element in the Tactile Region Based on EIT Method , 2007, 2007 IEEE Sensors.

[26]  Timothy M. Kowalewski,et al.  Stretchable, Flexible, Scalable Smart Skin Sensors for Robotic Position and Force Estimation , 2018, Sensors.

[27]  Mari Velonaki,et al.  Improved Image Reconstruction for an EIT-Based Sensitive Skin With Multiple Internal Electrodes , 2011, IEEE Transactions on Robotics.

[28]  D. Djajaputra Electrical Impedance Tomography: Methods, History and Applications , 2005 .

[29]  Hyosang Lee,et al.  Soft Nanocomposite Based Multi-point, Multi-directional Strain Mapping Sensor Using Anisotropic Electrical Impedance Tomography , 2017, Scientific Reports.

[30]  Robert D. Howe,et al.  A Robust Uniaxial Force Sensor for Minimally Invasive Surgery , 2010, IEEE Transactions on Biomedical Engineering.

[31]  Florian Michahelles,et al.  Sensing and monitoring professional skiers , 2005, IEEE Pervasive Computing.

[32]  Hiroyuki Shinoda,et al.  Robot skin based on touch-area-sensitive tactile element , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[33]  Manuchehr Soleimani,et al.  Electrical Impedance Tomography for Artificial Sensitive Robotic Skin: A Review , 2015, IEEE Sensors Journal.

[34]  Yaping Zang,et al.  Advances of flexible pressure sensors toward artificial intelligence and health care applications , 2015 .

[35]  Jin Keun Seo,et al.  EIT-Based Fabric Pressure Sensing , 2013, Comput. Math. Methods Medicine.