Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology.

A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.

[1]  P. François,et al.  GdpS contributes to Staphylococcus aureus biofilm formation by regulation of eDNA release. , 2014, International journal of medical microbiology : IJMM.

[2]  J. Anné,et al.  pspA overexpression in Streptomyces lividans improves both Sec- and Tat-dependent protein secretion , 2007, Applied Microbiology and Biotechnology.

[3]  Ruth-Sarah Rose,et al.  Pseudomonas aeruginosa Possesses Two Putative Type I Signal Peptidases, LepB and PA1303, Each with Distinct Roles in Physiology and Virulence , 2012, Journal of bacteriology.

[4]  J. V. van Dijl,et al.  The Tat system of Gram-positive bacteria. , 2014, Biochimica et biophysica acta.

[5]  Kristel Bernaerts,et al.  Cloning and Expression of Metagenomic DNA in Streptomyces lividans and Subsequent Fermentation for Optimized Production. , 2017, Methods in molecular biology.

[6]  János Bérdy,et al.  Bioactive microbial metabolites. , 2005, The Journal of antibiotics.

[7]  S. Karamanou,et al.  Breaking on through to the Other Side: Protein Export through the Bacterial Sec System , 2022 .

[8]  S. Bron,et al.  Post-translocational folding of secretory proteins in Gram-positive bacteria. , 2004, Biochimica et biophysica acta.

[9]  J. Anné,et al.  The Tat pathway in Streptomyces lividans: interaction of Tat subunits and their role in translocation. , 2007, Microbiology.

[10]  Wilbert Bitter,et al.  Tubercle bacilli rely on a type VII army for pathogenicity. , 2012, Trends in microbiology.

[11]  Jorge G Gomez-Gutierrez,et al.  Secretion of biologically active interferon-gamma inducible protein-10 (IP-10) by Lactococcus lactis , 2008 .

[12]  Zhaohui Xu,et al.  Functional Implementation of the Posttranslational SecB-SecA Protein-Targeting Pathway in Bacillus subtilis , 2011, Applied and Environmental Microbiology.

[13]  E. Devic,et al.  Production and purification of staphylococcal nuclease in Lactococcus lactis using a new expression-secretion system and a pH-regulated mini-reactor , 2010, Microbial cell factories.

[14]  J. Chatel,et al.  Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines , 2011, Microbial cell factories.

[15]  David E Block,et al.  A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression. , 2009, Metabolic engineering.

[16]  A. Joachimiak,et al.  EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles , 2015, Protein science : a publication of the Protein Society.

[17]  A. Miyoshi,et al.  Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer. , 2015, Vaccine.

[18]  Arnold J. M. Driessen,et al.  Δμ H+ and ATP function at different steps of the catalytic cycle of preprotein translocase , 1991, Cell.

[19]  O. Holst,et al.  Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12 , 1998, Applied Microbiology and Biotechnology.

[20]  Á. Manteca,et al.  Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production. , 2014, Bioresource technology.

[21]  C. Wittmann,et al.  Debottlenecking recombinant protein production in Bacillus megaterium under large‐scale conditions—targeted precursor feeding designed from metabolomics , 2012, Biotechnology and bioengineering.

[22]  T. Sysoeva,et al.  Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis , 2014, Proceedings of the National Academy of Sciences.

[23]  Cheng-Yi Kuo,et al.  A stably engineered, suicidal strain of listeria monocytogenes delivers protein and/or DNA to fully differentiated intestinal epithelial monolayers. , 2009, Molecular pharmaceutics.

[24]  R. Mellado,et al.  Physical requirements for in vitro processing of the Streptomyces lividans signal peptidases. , 2002, Journal of biotechnology.

[25]  M. Pavelka,et al.  The Twin-Arginine Translocation Pathway of Mycobacterium smegmatis Is Functional and Required for the Export of Mycobacterial β-Lactamases , 2005, Journal of bacteriology.

[26]  T. Palmer,et al.  The ESX/type VII secretion system modulates development, but not virulence, of the plant pathogen Streptomyces scabies. , 2013, Molecular plant pathology.

[27]  I. Sutcliffe New insights into the distribution of WXG100 protein secretion systems , 2011, Antonie van Leeuwenhoek.

[28]  Sierd Bron,et al.  Type I signal peptidases of Gram-positive bacteria. , 2004, Biochimica et biophysica acta.

[29]  W. Wiechert 13C metabolic flux analysis. , 2001, Metabolic engineering.

[30]  Preben Krabben,et al.  Unlocking Streptomyces spp. for Use as Sustainable Industrial Production Platforms by Morphological Engineering , 2006, Applied and Environmental Microbiology.

[31]  R. Takors,et al.  Genome reduction boosts heterologous gene expression in Pseudomonas putida , 2015, Microbial Cell Factories.

[32]  L. Axelsson,et al.  Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1 , 2009, BMC Genomics.

[33]  I. Wang,et al.  Holins: the protein clocks of bacteriophage infections. , 2000, Annual review of microbiology.

[34]  W. Duan,et al.  Clostridial Spores for Cancer Therapy: Targeting Solid Tumour Microenvironment , 2012, Journal of toxicology.

[35]  K. Maurer,et al.  Optimization of Protease Secretion in Bacillus subtilis and Bacillus licheniformis by Screening of Homologous and Heterologous Signal Peptides , 2010, Applied and Environmental Microbiology.

[36]  S. Karamanou,et al.  Functional large-scale production of a novel Jonesia sp. xyloglucanase by heterologous secretion from Streptomyces lividans. , 2006, Journal of biotechnology.

[37]  Y. Le Loir,et al.  Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production , 2005, Microbial cell factories.

[38]  E. Bayer,et al.  Establishment of a Simple Lactobacillus plantarum Cell Consortium for Cellulase-Xylanase Synergistic Interactions , 2013, Applied and Environmental Microbiology.

[39]  P. Genevaux,et al.  Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. , 2014, Biochimica et biophysica acta.

[40]  D. Dubnau,et al.  DNA uptake during bacterial transformation , 2004, Nature Reviews Microbiology.

[41]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[42]  Georgia Orfanoudaki,et al.  Proteome-wide Subcellular Topologies of E. coli Polypeptides Database (STEPdb)* , 2014, Molecular & Cellular Proteomics.

[43]  A. Elkamel,et al.  Development of a minimal defined medium for recombinant human interleukin‐3 production by Streptomyces lividans 66 , 2008, Biotechnology and bioengineering.

[44]  P. Christie,et al.  The expanding bacterial type IV secretion lexicon. , 2013, Research in microbiology.

[45]  Nigel P. Minton,et al.  Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker , 2012, Nucleic acids research.

[46]  David I. Ellis,et al.  Metabolomics investigation of recombinant mTNFα production in Streptomyces lividans , 2015, Microbial Cell Factories.

[47]  K. Hughes,et al.  Energy source of flagellar type III secretion , 2008, Nature.

[48]  P. Proost,et al.  Molecular characterization of a novel subtilisin inhibitor protein produced by Streptomyces venezuelae CBS762.70. , 1998, DNA sequence : the journal of DNA sequencing and mapping.

[49]  D. T. Jones,et al.  Acetone-butanol fermentation revisited. , 1986, Microbiological reviews.

[50]  A. Bolhuis,et al.  Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli. , 2003, Biochemical and biophysical research communications.

[51]  J. V. Van Impe,et al.  Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. , 2014, Biochimica et biophysica acta.

[52]  Royston Goodacre,et al.  Assessment of Adaptive Focused Acoustics versus Manual Vortex/freeze-thaw for Intracellular Metabolite Extraction from Streptomyces Lividans Producing Recombinant Proteins Using Gc-ms and Multi-block Principal Component Analysis , 2009 .

[53]  Oscar P. Kuipers,et al.  Quorum sensing-controlled gene expression in lactic acid bacteria , 1998 .

[54]  H. Shimizu,et al.  13 C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain. , 2014, Journal of biotechnology.

[55]  E. Remaut,et al.  Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis , 2010, Mucosal Immunology.

[56]  M. Brennan,et al.  PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX‐5 , 2009, Molecular microbiology.

[57]  T. Palmer,et al.  Role of the Escherichia coli Tat pathway in outer membrane integrity , 2003, Molecular microbiology.

[58]  P. Závodszky,et al.  The use of a flagellar export signal for the secretion of recombinant proteins in Salmonella. , 2012, Methods in molecular biology.

[59]  D. Oertel,et al.  A TatABC-Type Tat Translocase Is Required for Unimpaired Aerobic Growth of Corynebacterium glutamicum ATCC13032 , 2015, PloS one.

[60]  R. Grabherr,et al.  Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum , 2016, Microbial Cell Factories.

[61]  J. Willemse,et al.  Dynamic Localization of Tat Protein Transport Machinery Components in Streptomyces coelicolor , 2012, Journal of bacteriology.

[62]  Wolfgang Wiechert,et al.  Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum , 2014, Microbial Cell Factories.

[63]  T. Lamkemeyer,et al.  Role of the Twin-Arginine Translocation Pathway in Staphylococcus , 2009, Journal of bacteriology.

[64]  Linda M. Harvey,et al.  Practical Fermentation Technology , 2003 .

[65]  M. Bibb,et al.  Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters , 2011, Microbial biotechnology.

[66]  R. Mellado,et al.  Four genes encoding different type I signal peptidases are organized in a cluster in Streptomyces lividans TK21. , 1999, Microbiology.

[67]  Carl-Fredrik Mandenius,et al.  Bioprocess optimization using design‐of‐experiments methodology , 2008, Biotechnology progress.

[68]  U. Brockmeier New strategies to optimize the secretion capacity for heterologous proteins in Bacillus subtilis , 2006 .

[69]  M. Eiteman,et al.  Overcoming acetate in Escherichia coli recombinant protein fermentations. , 2006, Trends in biotechnology.

[70]  J. Cox,et al.  A Protein Secretion Pathway Critical for Mycobacterium tuberculosis Virulence Is Conserved and Functional in Mycobacterium smegmatis , 2005, Journal of bacteriology.

[71]  R. Mellado,et al.  Translocase and major signal peptidase malfunctions affect aerial mycelium formation in Streptomyces lividans. , 2012, Journal of biotechnology.

[72]  M. Saier,et al.  Holins in Bacteria, Eukaryotes, and Archaea: Multifunctional Xenologues with Potential Biotechnological and Biomedical Applications , 2014, Journal of bacteriology.

[73]  R. Mellado,et al.  A Streptomyces lividans SipY deficient strain as a host for protein production: standardization of operational alternatives for model proteins , 2017 .

[74]  W. Wiechert,et al.  Isotopically non-stationary metabolic flux analysis: complex yet highly informative. , 2013, Current opinion in biotechnology.

[75]  S. Mitsuhashi Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. , 2014, Current opinion in biotechnology.

[76]  M. Butler,et al.  Cloning and analysis of a gene from Streptomyces lividans 66 encoding a novel secreted protease exhibiting homology to subtilisin BPN′ , 1996, Applied Microbiology and Biotechnology.

[77]  J. M. Dijl,et al.  Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria , 2007, Applied Microbiology and Biotechnology.

[78]  K. Matsui,et al.  Functional Analysis of the Twin-Arginine Translocation Pathway in Corynebacterium glutamicum ATCC 13869 , 2006, Applied and Environmental Microbiology.

[79]  L. Schlegel,et al.  Lactobacillus Species as Opportunistic Pathogens in Immunocompromised Patients , 1998, European Journal of Clinical Microbiology and Infectious Diseases.

[80]  M A Henson,et al.  Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. , 2009, IET systems biology.

[81]  Karl A. Hassan,et al.  SecDF as Part of the Sec-Translocase Facilitates Efficient Secretion of Bacillus cereus Toxins and Cell Wall-Associated Proteins , 2014, PloS one.

[82]  C. Harwood,et al.  Production of Bacillus anthracis Protective Antigen Is Dependent on the Extracellular Chaperone, PrsA* , 2003, The Journal of Biological Chemistry.

[83]  S T Cole,et al.  Analysis of the proteome of Mycobacterium tuberculosis in silico. , 1999, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[84]  Tracy Palmer,et al.  The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor , 2006, Proceedings of the National Academy of Sciences.

[85]  B. Berks,et al.  The Twin Arginine Consensus Motif of Tat Signal Peptides Is Involved in Sec-independent Protein Targeting in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[86]  Yi Pan,et al.  Nonclassical Protein Secretion by Bacillus subtilis in the Stationary Phase Is Not Due to Cell Lysis , 2011, Journal of bacteriology.

[87]  P. Genevaux,et al.  Multitasking SecB chaperones in bacteria , 2014, Front. Microbiol..

[88]  Dawei Zhang,et al.  Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein , 2014, Biotechnology Letters.

[89]  A. Miyoshi,et al.  Immune Response Elicited by DNA Vaccination Using Lactococcus lactis Is Modified by the Production of Surface Exposed Pathogenic Protein , 2014, PloS one.

[90]  S. Raghavan,et al.  Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[91]  G. V. van Wezel,et al.  New approaches to achieve high level enzyme production in Streptomyces lividans , 2016, Microbial Cell Factories.

[92]  D. Haltrich,et al.  Secretory production of a beta-mannanase and a chitosanase using a Lactobacillus plantarum expression system , 2016, Microbial Cell Factories.

[93]  A. Driessen,et al.  Differential Dependence of Levansucrase and α-Amylase Secretion on SecA (Div) during the Exponential Phase of Growth of Bacillus subtilis , 1999, Journal of bacteriology.

[94]  Brian M. Forster,et al.  Protein transport across the cell wall of monoderm Gram‐positive bacteria , 2012, Molecular microbiology.

[95]  B. Berks,et al.  Sec-independent Protein Translocation in Escherichia coli , 1999, The Journal of Biological Chemistry.

[96]  P. Çalık,et al.  Bioreaction network flux analysis for human protein producing Bacillus subtilis based on genome-scale model , 2010 .

[97]  Keiichi Namba,et al.  Bacterial nanomachines: the flagellum and type III injectisome. , 2010, Cold Spring Harbor perspectives in biology.

[98]  K. Schwarz,et al.  Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824 , 2013, Biotechnology for Biofuels.

[99]  A. Bolotin,et al.  HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing , 2000, Molecular microbiology.

[100]  W. Schumann Production of recombinant proteins in Bacillus subtilis. , 2007, Advances in applied microbiology.

[101]  L. Axelsson,et al.  Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors , 2014, PloS one.

[102]  P Lambin,et al.  Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo , 2006, British Journal of Cancer.

[103]  Ljiljana Paša-Tolić,et al.  Unexpected Diversity of Signal Peptides in Prokaryotes , 2012, mBio.

[104]  A. Politou,et al.  Protein secretion biotechnology using Streptomyces lividans: large-scale production of functional trimeric tumor necrosis factor alpha. , 2001, Biotechnology and bioengineering.

[105]  Asma Ahmed,et al.  Immunoregulatory functions and expression patterns of PE/PPE family members: Roles in pathogenicity and impact on anti‐tuberculosis vaccine and drug design , 2015, IUBMB life.

[106]  C. Vallín,et al.  A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. , 2010, Microbiology.

[107]  J. Wells,et al.  Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria , 2008, Nature Reviews Microbiology.

[108]  H. Fierobe,et al.  The Issue of Secretion in Heterologous Expression of Clostridium cellulolyticum Cellulase-Encoding Genes in Clostridium acetobutylicum ATCC 824 , 2011, Applied and Environmental Microbiology.

[109]  Gilles P van Wezel,et al.  The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. , 2011, Natural product reports.

[110]  M. Inui,et al.  Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. , 2009, Microbiology.

[111]  S. Bron,et al.  SecDF of Bacillus subtilis, a Molecular Siamese Twin Required for the Efficient Secretion of Proteins* , 1998, The Journal of Biological Chemistry.

[112]  M. Mayer,et al.  Mechanisms of Protein Folding: Molecular Chaperones and Their Application in Biotechnology , 2002, Chembiochem : a European journal of chemical biology.

[113]  F. García-Ochoa,et al.  Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. , 2009, Biotechnology advances.

[114]  M. Sarvas,et al.  Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post‐translocational protein folding and degradation , 2005, Journal of applied microbiology.

[115]  Kristel Bernaerts,et al.  Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium. , 2012, Journal of biotechnology.

[116]  Sibel Ÿztürk,et al.  Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review. , 2016, Trends in biotechnology.

[117]  Oscar P. Kuipers,et al.  Proteomics of Protein Secretion by Bacillus subtilis: Separating the “Secrets” of the Secretome , 2004, Microbiology and Molecular Biology Reviews.

[118]  H. Shimizu,et al.  Improving protein secretion of a transglutaminase-secreting Corynebacterium glutamicum recombinant strain on the basis of 13C metabolic flux analysis. , 2011, Journal of bioscience and bioengineering.

[119]  Denice C. Bay,et al.  Diversity and Evolution of Bacterial Twin Arginine Translocase Protein, TatC, Reveals a Protein Secretion System That Is Evolving to Fit Its Environmental Niche , 2013, PloS one.

[120]  C. Harwood,et al.  Heterologous protein secretion by bacillus species from the cradle to the grave. , 2010, Advances in applied microbiology.

[121]  U. Sauer,et al.  13C-based metabolic flux analysis , 2009, Nature Protocols.

[122]  Bo Zhang,et al.  Genome Sequence of the Milbemycin-Producing Bacterium Streptomycesbingchenggensis , 2010, Journal of bacteriology.

[123]  Bradley S Moore,et al.  Genomic basis for natural product biosynthetic diversity in the actinomycetes. , 2009, Natural product reports (Print).

[124]  K. I. Sørensen,et al.  Heterologous expression of glycoside hydrolase family 2 and 42 β-galactosidases of lactic acid bacteria in Lactococcus lactis. , 2010, Systematic and applied microbiology.

[125]  H Sahm,et al.  Proteome analysis of Corynebacterium glutamicum , 2001, Electrophoresis.

[126]  Crystallographic analysis of Bacillus subtilis CsaA. , 2007, Acta crystallographica. Section D, Biological crystallography.

[127]  Pauline M. Doran,et al.  Bioprocess engineering principles, 2nd ed. , 2013 .

[128]  J. Beatty,et al.  Phosphate Concentration and the Putative Sensor Kinase Protein CckA Modulate Cell Lysis and Release of the Rhodobacter capsulatus Gene Transfer Agent , 2013, Journal of bacteriology.

[129]  J. V. van Dijl,et al.  Secretion of functional human interleukin-3 from Bacillus subtilis. , 2006, Journal of biotechnology.

[130]  B. Berks,et al.  The TatC component of the twin‐arginine protein translocase functions as an obligate oligomer , 2015, Molecular microbiology.

[131]  Ping Zheng,et al.  A novel strategy for protein production using non-classical secretion pathway in Bacillus subtilis , 2016, Microbial Cell Factories.

[132]  J. V. van Dijl,et al.  A Tat ménage à trois--The role of Bacillus subtilis TatAc in twin-arginine protein translocation. , 2015, Biochimica et biophysica acta.

[133]  J. V. Van Impe,et al.  Recombinant protein production and streptomycetes. , 2012, Journal of biotechnology.

[134]  Á. Manteca,et al.  Mycelium Differentiation and Antibiotic Production in Submerged Cultures of Streptomyces coelicolor , 2008, Applied and Environmental Microbiology.

[135]  S. Ahn,et al.  Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance , 2012, BMC Microbiology.

[136]  Michiel Kleerebezem,et al.  10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis , 2005, Applied Microbiology and Biotechnology.

[137]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[138]  J. Impe,et al.  On the influence of overexpression of phosphoenolpyruvate carboxykinase in Streptomyces lividans on growth and production of human tumour necrosis factor-alpha , 2012, Applied Microbiology and Biotechnology.

[139]  D. Kearns,et al.  FlgM Is Secreted by the Flagellar Export Apparatus in Bacillus subtilis , 2014, Journal of bacteriology.

[140]  Jian Chen,et al.  Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species , 2014, Journal of Industrial Microbiology & Biotechnology.

[141]  S. Cole,et al.  Inactivation of Rv2525c, a Substrate of the Twin Arginine Translocation (Tat) System of Mycobacterium tuberculosis, Increases β-Lactam Susceptibility and Virulence , 2006, Journal of bacteriology.

[142]  D. Missiakas,et al.  EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[143]  S. Kanaya,et al.  Enhanced Recombinant Protein Productivity by Genome Reduction in Bacillus subtilis , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[144]  T. Hasegawa,et al.  Analysis of Twin-Arginine Translocation Pathway Homologue in Staphylococcus aureus , 2007, Current Microbiology.

[145]  K. Ozaki,et al.  Enhanced Extracellular Production of Heterologous Proteins in Bacillus subtilis by Deleting the C-terminal Region of the SecA Secretory Machinery , 2010, Molecular biotechnology.

[146]  A. J. Darwin,et al.  The phage‐shock‐protein response , 2005, Molecular microbiology.

[147]  D. Kell,et al.  Metabolomics by numbers: acquiring and understanding global metabolite data. , 2004, Trends in biotechnology.

[148]  D. Chevret,et al.  Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis , 2015, Microbial Cell Factories.

[149]  Xin Song,et al.  Common Non-classically Secreted Bacterial Proteins with Experimental Evidence , 2015, Current Microbiology.

[150]  F. Fang,et al.  Compensatory role of PspA, a member of the phage shock protein operon, in rpoE mutant Salmonella enterica serovar Typhimurium , 2005, Molecular microbiology.

[151]  Wolfgang Wiechert,et al.  Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping , 2015, Microbial Cell Factories.

[152]  J. Anné,et al.  The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. , 2004, Microbiology.

[153]  Ning Li,et al.  Combined Antibacterial Activity of Phage Lytic Proteins Holin and Lysin from Streptococcus suis Bacteriophage SMP , 2012, Current Microbiology.

[154]  J. V. Van Impe,et al.  Amino acid uptake profiling of wild type and recombinant Streptomyces lividans TK24 batch fermentations. , 2011, Journal of biotechnology.

[155]  G. Waksman,et al.  Structural Biology of Bacterial Type IV Secretion Systems. , 2015, Annual review of biochemistry.

[156]  G. Georgiou,et al.  Phage Shock Protein PspA of Escherichia coli Relieves Saturation of Protein Export via the Tat Pathway , 2004, Journal of bacteriology.

[157]  Longmei Zhao,et al.  High-Level Overproduction of Thermobifida Enzyme in Streptomyces lividans Using a Novel Expression Vector , 2013, International journal of molecular sciences.

[158]  M. Pallen The ESAT-6/WXG100 superfamily -- and a new Gram-positive secretion system? , 2002, Trends in microbiology.

[159]  E. Vrontou,et al.  A molecular switch in SecA protein couples ATP hydrolysis to protein translocation , 1999, Molecular microbiology.

[160]  R. Freedman,et al.  High‐level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin‐arginine translocation system in Escherichia coli , 2013, The FEBS journal.

[161]  V. Parro,et al.  SipY Is the Streptomyces lividans Type I Signal Peptidase Exerting a Major Effect on Protein Secretion , 2002, Journal of bacteriology.

[162]  Christian González-Rivera,et al.  Chimeric Coupling Proteins Mediate Transfer of Heterologous Type IV Effectors through the Escherichia coli pKM101-Encoded Conjugation Machine , 2016, Journal of bacteriology.

[163]  Gengfeng Fu,et al.  Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: Selective inhibitor of angiogenesis and hypoxic tumor growth , 2003, Cancer Gene Therapy.

[164]  Robert S. Benjamin,et al.  Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses , 2014, Science Translational Medicine.

[165]  Jörg P. Müller,et al.  The Twin-arginine Signal Peptide of PhoD and the TatAd/Cd Proteins of Bacillus subtilis Form an Autonomous Tat Translocation System* , 2002, The Journal of Biological Chemistry.

[166]  K. Matsui,et al.  TatABC Overexpression Improves Corynebacterium glutamicum Tat-Dependent Protein Secretion , 2008, Applied and Environmental Microbiology.

[167]  M. Hecker,et al.  Genetic or chemical protease inhibition causes significant changes in the Bacillus subtilis exoproteome , 2008, Proteomics.

[168]  A. Henriques,et al.  A Gene Encoding a Holin-Like Protein Involved in Spore Morphogenesis and Spore Germination in Bacillus subtilis , 2005, Journal of bacteriology.

[169]  Jennifer L. Reed,et al.  OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains , 2010, BMC Systems Biology.

[170]  D. Oliver,et al.  Characterization of the Escherichia coli SecA Signal Peptide-Binding Site , 2011, Journal of bacteriology.

[171]  M. Hecker,et al.  ClpXP Protease Regulates the Signal Peptide Cleavage of Secretory Preproteins in Bacillus subtilis with a Mechanism Distinct from That of the Ecs ABC Transporter , 2002, Journal of bacteriology.

[172]  S. Lee,et al.  Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. , 2003, Biotechnology and bioengineering.

[173]  L. Mellaert,et al.  Evaluation of TatABC overproduction on Tat- and Sec-dependent protein secretion in Streptomyces lividans , 2006, Archives of Microbiology.

[174]  J. V. van Dijl,et al.  Applications of thiol-disulfide oxidoreductases for optimized in vivo production of functionally active proteins in Bacillus , 2009, Applied Microbiology and Biotechnology.

[175]  A. Lantz,et al.  Robust, small-scale cultivation platform for Streptomyces coelicolor , 2012, Microbial Cell Factories.

[176]  B. Berks The twin-arginine protein translocation pathway. , 2015, Annual review of biochemistry.

[177]  S. Bron,et al.  Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. , 1998, Genes & development.

[178]  G. Matlashewski,et al.  Generation and evaluation of A2-expressing Lactococcus lactis live vaccines against Leishmania donovani in BALB/c mice. , 2011, Journal of medical microbiology.

[179]  S. Jaenicke,et al.  Complete genome sequence of Streptomyces lividans TK24. , 2015, Journal of biotechnology.

[180]  Marco Oldiges,et al.  An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform , 2012, Microbial Cell Factories.

[181]  Ping Zheng,et al.  Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression , 2015, Microbial Cell Factories.

[182]  Sebastian Shterental,et al.  Secreted-Protein Response to σU Activity in Streptomyces coelicolor , 2007 .

[183]  L. Dubois,et al.  Spores of Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors in vivo , 2014, Oncotarget.

[184]  J. Anné,et al.  Modifications of Streptomyces signal peptides and their effects on protein production and secretion. , 1998, FEMS microbiology letters.

[185]  G. Selvam,et al.  In vitro degradation of oxalate by recombinant Lactobacillus plantarum expressing heterologous oxalate decarboxylase , 2013, Journal of applied microbiology.

[186]  A. Miyoshi,et al.  Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. , 2011, Protein expression and purification.

[187]  M. Olivier,et al.  Immunization against Leishmania major Infection Using LACK- and IL-12-Expressing Lactococcus lactis Induces Delay in Footpad Swelling , 2012, PloS one.

[188]  L. Mellaert,et al.  Assessment of an ELISA for serodiagnosis of active pulmonary tuberculosis in a Cuban population , 2015 .

[189]  Andriy Luzhetskyy,et al.  Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. , 2013, Metabolic engineering.

[190]  B. Palsson,et al.  Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods , 2012, Nature Reviews Microbiology.

[191]  S. Bron,et al.  Functional Analysis of Paralogous Thiol-disulfide Oxidoreductases in Bacillus subtilis * , 1999, The Journal of Biological Chemistry.

[192]  Chung-Dar Lu,et al.  An internal hydrophobic helical domain of Bacillus subtilis enolase is essential but not sufficient as a non-cleavable signal for its secretion. , 2014, Biochemical and biophysical research communications.

[193]  D. Jahn,et al.  Coexpression of the type I signal peptidase gene sipM increases recombinant protein production and export in Bacillus megaterium MS941. , 2005, Biotechnology and bioengineering.

[194]  M. Hecker,et al.  A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis. , 2014, Journal of biotechnology.

[195]  Y. Kikuchi,et al.  Secretion of human epidermal growth factor by Corynebacterium glutamicum , 2006, Letters in applied microbiology.