Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C

The formation of pyrite and marcasite from a FeS precursor has been examined experimentally. In aging experiments at 65°C, the conversion of precursor amorphous FeS depends on these geologically relevant variables: concentration of sulfur-contributing species, acidity, redox state, time, Fe(II)/S(−II) ratio in solution, and addition of an organic ligand (citrate). The results indicate that pyrite and marcasite formation proceed at a significant rate only if intermediate sulfur species (i.e., polysulfides, polythionates, or thiosulfate) are present in solution. In the absence of any sulfur contributor or with only hydrogen sulfide or bisulfide present, no FeS2 formed within 16 days. Sulfidation of the precursor proceeds through progressively more sulfur-rich, Fe-S phases: am FeS (Fe1.11S-Fe1.09S) → mackinawite (FeS0.93-FeS0.96) → greigite (Fe3S4) → pyrite/marcasite FeS2. Greigite is absent under very reduced environments. The conversion sequence found in this study is in good agreement with iron-sulfide distribution patterns found in modern marine sediments.

[1]  D. Rickard Kinetics and the mechanism of sulfidation of goethite , 1974 .

[2]  W. B. Roberts,et al.  The chemistry of pyrite formation in aqueous solution and its relation to the depositional environment , 1969 .

[3]  G. Luther,et al.  Inorganic and Organic Sulfur Cycling in Salt-Marsh Pore Waters , 1986, Science.

[4]  D. Welte,et al.  Petroleum Formation and Occurrence , 1989 .

[5]  A. Lasaga,et al.  Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems , 1982 .

[6]  R. Berner thermodynamic stability of sedimentary iron sulfides , 1967 .

[7]  S. Sommer,et al.  Sedimentary iron monosulfides: Kinetics and mechanism of formation , 1981 .

[8]  K. Stetter,et al.  Pyrite formation linked with hydrogen evolution under anaerobic conditions , 1990, Nature.

[9]  P. Taylor,et al.  On the conversion of mackinawite to greigite , 1979 .

[10]  R. Berner Iron Sulfides Formed from Aqueous Solution at Low Temperatures and Atmospheric Pressure , 1964, The Journal of Geology.

[11]  H. Wada The Synthesis of Greigite from a Polysulfide Solution at about 100 °C , 1977 .

[12]  J. Boulègue Solubility of Elemental Sulfur in Water at 298 K , 1978 .

[13]  I. B. Lambert Post-depositional availability of sulphur and metals and formation of secondary textures and structures in stratiform sedimentary sulphide deposits , 1973 .

[14]  S. Horiuchi,et al.  Morphology and imperfection of hydrothermally synthesized greigite (Fe3S4) , 1974 .

[15]  H. Barnes,et al.  Marcasite precipitation from hydrothermal solutions , 1986 .

[16]  M. Schoonen,et al.  Precipitation from supersaturated aluminate solutions. IV. Influence of citrate ions , 1985 .

[17]  F. Millero,et al.  The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters , 1987 .

[18]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[19]  R. Berner Sedimentary pyrite formation , 1970 .

[20]  G. Tunell,et al.  Systems S-Na 2 O-H 2 O and S-H 2 O--Application to the mode of origin of natural alkaline polysulfide and thiosulfate solutions , 1960 .

[21]  E. T. Allen,et al.  The mineral sulphides of iron; with crystallographic study by E. S. Larsen , 1912 .

[22]  S. Takeno,et al.  Metastable cubic iron sulfide—with special reference to mackinawite , 1970 .

[23]  E. T. Allen,et al.  Effect of temperature and acidity in the formation of marcasite (FeS 2 ) and wurtzite (ZnS); a contribution to the genesis of unstable forms , 1914 .

[24]  M. Schoonen,et al.  An approximation of the second dissociation constant for H2S , 1988 .

[25]  D. Velinsky,et al.  Temporal variations of sedimentary sulfur in a Delaware salt marsh , 1988 .

[26]  D. Postma,et al.  Pyrite formation in anoxic environments of the Baltic , 1988 .

[27]  D. Rickard Kinetics and mechanism of pyrite formation at low temperatures , 1975 .

[28]  D. Grant,et al.  Citrate Complexes with Iron(II) and Iron(III)1 , 1954 .

[29]  K. Osseo-asare,et al.  Aspects of the Interfacial Electrochemistry of Semiconductor Pyrite ( FeS2 ) , 1988 .

[30]  T. E. Rummery,et al.  Reactions of iron monosulfide solids with aqueous hydrogen sulfide up to 160°C , 1979 .

[31]  D. Canfield,et al.  Dissolution and pyritization of magnetite in anoxie marine sediments , 1987 .

[32]  H. Barnes,et al.  Formation of cubic FeS , 1986 .

[33]  J. Damsté,et al.  The occurrence and identification of series of organic sulphur compounds in oils and sediment extracts: II. Their presence in samples from hypersaline and non-hypersaline palaeoenvironments and possible application as source, palaeoenvironmental and maturity indicators , 1989 .

[34]  M. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100°C , 1991 .

[35]  S. Horiuchi Zur Umwandlung von Mackinawit (FeS) in Greigit (Fe3S4) durch Elektronenstrahlen , 1971 .

[36]  I. Kaplan,et al.  Pyrite Framboid Formation; Laboratory Synthesis and Marine Sediments , 1973 .

[37]  J. Craig,et al.  Mineral chemistry of metal sulfides , 1978 .