Excitation energies in Brillouin-Wigner-based multireference perturbation theory

[1]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[2]  S. Peyerimhoff,et al.  Mixed valence—Rydberg states , 1975 .

[3]  K. Freed,et al.  Solution of large configuration mixing matrices arising in partitioning technique and applications to the generalized eigenvalue problem , 1975 .

[4]  K. Freed,et al.  Tests of using large valence spaces in quasidegenerate many‐body perturbation theory: Calculations of O2 potential curves , 1984 .

[5]  R. Bartlett,et al.  Transformation of the Hamiltonian in excitation energy calculations: Comparison between Fock‐space multireference coupled‐cluster and equation‐of‐motion coupled‐cluster methods , 1991 .

[6]  R. Bartlett,et al.  A multireference coupled‐cluster method for special classes of incomplete model spaces , 1989 .

[7]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[8]  S. Peyerimhoff,et al.  Nonadiabatic treatment of the intensity distribution in the V–N bands of ethylene , 1982 .

[9]  W. Wenzel,et al.  Brillouin–Wigner based multi-reference perturbation theory for electronic correlation effects , 1998 .

[10]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[11]  S. Peyerimhoff,et al.  Theoretical study of the ground and excited states of ozone in its symmetric nuclear arrangement , 1993 .

[12]  K. Freed,et al.  Ab initio calculations of the pi electron hamiltonian: singlet-triplet splittings , 1974 .

[13]  Rodney J. Bartlett,et al.  The equation-of-motion coupled-cluster method: Excitation energies of Be and CO , 1989 .

[14]  I. Shavitt,et al.  An application of perturbation theory ideas in configuration interaction calculations , 1968 .

[15]  B. Roos,et al.  A theoretical study of the diffuseness of the V(1B1u) state of planar ethylene , 1989 .

[16]  W. Butscher,et al.  Calculation of the vertical electronic spectrum of the nitrogen molecule using the mrd-ci method , 1978 .

[17]  R. Bartlett,et al.  Molecular applications of multireference coupled‐cluster methods using an incomplete model space: Direct calculation of excitation energies , 1988 .

[18]  Gabriel Hose,et al.  A General-Model-Space Diagrammatic Perturbation Theory , 1980 .

[19]  B. Brandow Linked-Cluster Expansions for the Nuclear Many-Body Problem , 1967 .

[20]  P. Hay On the calculation of natural orbitals by perturbation theory , 1973 .

[21]  E. Davidson,et al.  Singlet Rydberg states of ethylene , 1977 .

[22]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[23]  R. Bartlett,et al.  Excitation energies with multireference many‐body perturbation theory , 1990 .

[24]  de Jeu WH,et al.  3D XY behavior of a nematic-smectic-A phase transition: Confirmation of the de Gennes model. , 1992, Physical review letters.

[25]  Bowen Liu,et al.  Abinitio configuration interaction study of the valence states of O2 , 1977 .

[26]  G. Hose Multireference‐state Rayleigh–Schrödinger perturbation theory applied to the electronic states X 1Σ+g and EF 1Σ+g of H2 , 1986 .

[27]  K. P. Lawley,et al.  Ab initio methods in quantum chemistry , 1987 .

[28]  Roland Lindh,et al.  Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene , 1993 .

[29]  B. Brandow Formal theory of effective π‐electron hamiltonians , 1979 .

[30]  B. Roos,et al.  Towards an accurate molecular orbital theory for excited states: the benzene molecule , 1992 .

[31]  Wolfgang Wenzel,et al.  An algorithm for the multi-reference configuration interaction method on distributed memory architectures , 1998 .