Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities

Abstract Fuel cells are devices that convert chemical energy in hydrogen enriched fuels into electricity electrochemically. Micro-tubular solid oxide fuel cells (MT-SOFCs), the type pioneered by K. Kendall in the early 1990s, are a variety of SOFCs that are on the scale of millimetres compared to their much larger SOFC relatives that are typically on the scale of tens of centimetres. The main advantage of the MT-SOFC, over its larger predecessor, is that it is smaller in size and is more suitable for rapid start up. This may allow the SOFC to be used in devices such as auxiliary power units, automotive power supplies, mobile electricity generators and battery re-chargers. The following paper is Part I of a two part series. Part I will introduce the reader to the MT-SOFC stack and its applications, indicating who is researching what in this field and also specifically investigate the design issues related to multi-cell reactor systems called stacks. Part II will review in detail the combinations of materials and methods used to produce the electrodes and electrolytes of MT-SOFC's. Also the role of modelling and validation techniques used in the design and improvement of the electrodes and electrolytes will be investigated. A broad range of scientific and engineering disciplines are involved in a stack design. Scientific and engineering content has been discussed in the areas of thermal-self-sustainability and efficiency, sealing technologies, manifold design, electrical connections and cell performance optimisation.

[1]  Sudip Ghosh,et al.  Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell , 2006 .

[2]  Daniele Cocco,et al.  Externally reformed solid oxide fuel cell–micro-gas turbine (SOFC–MGT) hybrid systems fueled by methanol and di-methyl-ether (DME) , 2009 .

[3]  P. Sarkar,et al.  Tubular Micro-Solid Oxide Fuel Cell for Remote Power Applications , 2007 .

[4]  Toshiaki Yamaguchi,et al.  Recent Development of Microceramic Reactors for Advanced Ceramic Reactor System , 2008 .

[5]  Volker Krebs,et al.  Macroscale modeling of cathode formation in SOFC , 2004 .

[6]  Gerry Agnew,et al.  An internal reformer for a pressurised SOFC system , 2006 .

[7]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[8]  Kevin Kendall,et al.  Cycling Studies of Microtubular SOFCs , 2009 .

[9]  Toshiaki Yamaguchi,et al.  Fabrication of micro-tubular solid oxide fuel cells with a single-grain-thick yttria stabilized zirconia electrolyte , 2010 .

[10]  V. A. C. Haanappel,et al.  A review of standardising SOFC measurement and quality assurance at FZJ , 2007 .

[11]  Michael Stelter,et al.  Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units , 2006 .

[12]  Yoichi Ito,et al.  Fabrication and characterization of microtubular and flattened ribbed SOFCs prepared by the multi-dip coating and co-firing , 2010 .

[13]  Hans-Heinrich Möbius,et al.  On the history of solid electrolyte fuel cells , 1997 .

[14]  G.S.V. Raghavan,et al.  Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger , 2002 .

[15]  Jiang Liu,et al.  Slip casting combined with colloidal spray coating in fabrication of tubular anode-supported solid oxide fuel cells , 2008 .

[16]  Antonia Moropoulou,et al.  Oxidation and Resulting Mechanical Properties of Ni/8Y_2O_3-stabilized Zirconia Anode Substrate for Solid-oxide Fuel Cells , 2002 .

[17]  Mogens Bjerg Mogensen,et al.  Redox stability of SOFC: Thermal analysis of Ni-YSZ composites , 2009 .

[18]  Massimiliano Cimenti,et al.  Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes , 2009 .

[19]  Nigel M. Sammes,et al.  Mechanical Properties of Anode-Supported Micro-Tubular Solid Oxide Fuel Cells , 2007 .

[20]  Alberto Traverso,et al.  Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels , 2010 .

[21]  Yanhai Du,et al.  Optimisation parameters for the extrusion of thin YSZ tubes for SOFC electrolytes , 2000 .

[22]  Bo Liang,et al.  Development of Bi-Metal Anode Microtubular Supports for Solid Oxide Fuel Cells , 2011 .

[23]  Joyce Smith Cooper,et al.  Taxonomies of SOFC material and manufacturing alternatives , 2005 .

[24]  Robert J. Kee,et al.  Solid-oxide fuel cells with hydrocarbon fuels , 2005 .

[25]  K. Kendall,et al.  A 1000-cell SOFC reactor for domestic cogeneration , 1998 .

[26]  Hironori Nakajima,et al.  Electrochemical Impedance Spectroscopy Analysis of an Anode-Supported Microtubular Solid Oxide Fuel Cell , 2010 .

[27]  K. Kendall,et al.  The effect of temperature gradients on thermal cycling and isothermal ageing of micro-tubular solid oxide fuel cells , 2009 .

[28]  Toshiaki Yamaguchi,et al.  Fabrication and characterization of micro tubular SOFCs for advanced ceramic reactors , 2008 .

[29]  Caine M. Finnerty,et al.  Internal reforming of hydrocarbon fuels in tubular solid oxide fuel cells , 2008 .

[30]  H. Ho,et al.  Multi-level modeling of SOFC–gas turbine hybrid system , 2003 .

[31]  Kang Li,et al.  Morphological studies of macrostructure of Ni–CGO anode hollow fibres for intermediate temperature solid oxide fuel cells , 2010 .

[32]  Pedro Nehter Two-dimensional transient model of a cascaded micro-tubular solid oxide fuel cell fed with methane , 2006 .

[33]  I. Villarreal,et al.  Fabrication, electrochemical characterization and thermal cycling of anode supported microtubular solid oxide fuel cells , 2009 .

[34]  Yanhai Du,et al.  Advanced tubular solid oxide fuel cells with high efficiency for internal reforming of hydrocarbon fuels , 2009 .

[35]  Hironori Nakajima,et al.  Thermal Analysis of a Microtubular Solid Oxide Fuel Cell Using Electrochemical Impedance Spectroscopy , 2009 .

[36]  Caine M. Finnerty,et al.  Development of a novel test system for in situ catalytic, electrocatalytic and electrochemical studies of internal fuel reforming in solid oxide fuel cells , 2000 .

[37]  Nigel Sammes,et al.  Comparison of Mechanical Testing Methods for Micro-tubular Solid Oxide Fuel Cells , 2009 .

[38]  S. J. Visco,et al.  Water-based binder system for SOFC porous steel substrates , 2007 .

[39]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[40]  Raymond J. Gorte,et al.  Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon , 2002 .

[41]  A. J. Appleby,et al.  Fuel cell technology: Status and future prospects☆☆☆ , 1996 .

[42]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[43]  D. Cui,et al.  Thermal stress modeling of anode supported micro-tubular solid oxide fuel cell , 2009 .

[44]  Ibrahim Dincer,et al.  Mathematical modeling of transport phenomena in porous SOFC anodes , 2007 .

[45]  N. Sammes,et al.  Experimental analysis of micro-tubular solid oxide fuel cell fed by hydrogen , 2010 .

[46]  Ryohei Yokoyama,et al.  Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems , 2010 .

[47]  D. Cui,et al.  Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling , 2007 .

[48]  Toshiaki Yamaguchi,et al.  Development of Microtubular SOFCs , 2008 .

[49]  Kang Li,et al.  Co-Extrusion / Phase Inversion / Co-Sintering for Fabrication of Hollow Fiber Solid Oxide Fuel Cells , 2009 .

[50]  Rak-Hyun Song,et al.  Development of a 700 W anode-supported micro-tubular SOFC stack for APU applications , 2008 .

[51]  R. Chouikh,et al.  Numerical study of the laminar natural convection flow around an array of two horizontal isothermal cylinders , 1999 .

[52]  Michael C. Tucker,et al.  Progress in metal-supported solid oxide fuel cells: A review , 2010 .

[53]  Alejandro Várez,et al.  Fabrication of 8-YSZ thin-wall tubes by powder extrusion moulding for SOFC electrolytes , 2009 .

[54]  Raj N. Singh,et al.  Sealing Technology for Solid Oxide Fuel Cells (SOFC) , 2007 .

[55]  Pallippattu Krishnan Vijayan,et al.  Experimental and CFD estimation of heat transfer in helically coiled heat exchangers , 2008 .

[56]  John S. Hardy,et al.  Material Degradation during Isothermal Aging and Thermal Cycling of Hybrid Mica Seal with Ag Interlayer under SOFC Exposure Conditions , 2006 .

[57]  Bin Liu,et al.  Understanding of redox behavior of Ni–YSZ cermets , 2009 .

[58]  Kazunari Sasaki,et al.  Equilibria in Fuel Cell Gases II. The C-H-O Ternary Diagrams , 2003 .

[59]  Dieter Meissner,et al.  Operating Microtubular SOFCS With Hydrogen Chloride and Hydrogen Sulfide Containing Fuels and Synthetic Wood Gas , 2006 .

[60]  Toshiaki Yamaguchi,et al.  Fabrication and characterization of high performance cathode supported small-scale SOFC for intermediate temperature operation , 2008 .

[61]  W.Grover Coors,et al.  Large limits of electrical efficiency in hydrocarbon fueled SOFCs , 2005 .

[62]  N. Minh Ceramic Fuel Cells , 1993 .

[63]  Robert J. Kee,et al.  Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas , 2003 .

[64]  Kevin Kendall,et al.  Progress in solid oxide fuel cell materials , 2005 .

[65]  Marco Sorrentino,et al.  Control Oriented Modeling of Solid Oxide Fuel Cell Auxiliary Power Unit for Transportation Applications , 2009 .

[66]  R. Chouikh,et al.  Experimental study of the natural convection flow around an array of heated horizontal cylinders , 2000 .

[67]  Kevin Kendall,et al.  Numerical modelling of methane-powered micro-tubular, single-chamber solid oxide fuel cell , 2010 .

[68]  Piotr Jasinski,et al.  Impedance spectroscopy of single chamber SOFC , 2004 .

[69]  Do Kyung Kim,et al.  Electrical conductivity studies on the LSGM-CGO composite electrolytes , 2010 .

[70]  Kang Li,et al.  Characterization of NiO-yttria stabilised zirconia (YSZ) hollow fibres for use as SOFC anodes , 2009 .

[71]  Kevin Kendall,et al.  Progress in Microtubular Solid Oxide Fuel Cells , 2010 .

[72]  Kang Li,et al.  Single-step fabrication and characterisations of electrolyte/anode dual-layer hollow fibres for micro-tubular solid oxide fuel cells , 2010 .

[73]  Yoshinobu Fujishiro,et al.  New Fabrication Technique for Series‐Connected Stack With Micro Tubular SOFCs , 2009 .

[74]  Shinji Kimijima,et al.  Performance analysis for the part-load operation of a solid oxide fuel cell–micro gas turbine hybrid system , 2008 .

[75]  Mustafa Fazil Serincan,et al.  Thermal stresses in an operating micro-tubular solid oxide fuel cell , 2010 .

[76]  Yasunobu Mizutani,et al.  Experiences With the First Japanese-Made Solid-Oxide Fuel-Cell System , 2005 .

[77]  Toshiaki Yamaguchi,et al.  Improvement of SOFC Performance Using a Microtubular, Anode-Supported SOFC , 2006 .

[78]  Jin Yong Kim,et al.  Mechanical properties and dual atmosphere tolerance of Ag–Al based braze , 2008 .

[79]  K. Sasaki,et al.  Equilibria in Fuel Cell Gases I. Equilibrium Compositions and Reforming Conditions , 2003 .

[80]  Robert J. Braun,et al.  Evaluating SOFC-based Power System Concepts for Unmanned Undersea Vehicles , 2009 .

[81]  Hsueh-Chia Chang,et al.  Analysis of heat transfer enhancement in coiled-tube heat exchangers , 2001 .

[82]  Heesung Yoon,et al.  Development of High Performance Ceria/Bismuth Oxide Bilayered Electrolyte SOFCs for Lower Temperature Operation , 2010 .

[83]  Meilin Liu,et al.  Monitoring Ag−Cr Interactions in SOFC Cathodes Using Raman Spectroscopy , 2008 .

[84]  Kyle J. Daun,et al.  Radiation heat transfer in planar SOFC electrolytes , 2006 .

[85]  Dieter Meissner,et al.  Characterization of Fuel Cells and Fuel Cell Systems Using Three-Dimensional X-Ray Tomography , 2007 .

[86]  Raphaël Ihringer,et al.  Concept and technology of SOFC for electric vehicles , 2000 .

[87]  Bin Zhu,et al.  Innovative low temperature SOFCs and advanced materials , 2003 .

[88]  Eric D. Wachsman,et al.  Thermo-Chemical Expansion of SOFC Materials , 2006 .

[89]  Nigel M. Sammes,et al.  Novel applications for micro-SOFCs , 2000 .

[90]  Wolfgang Winkler,et al.  Design studies of mobile applications with SOFC-heat engine modules , 2002 .

[91]  Waldemar Bujalski,et al.  Comparative Analysis of Thermal and Redox Cycling for Microtubular SOFCs , 2007 .

[92]  Mustafa Fazil Serincan,et al.  Computational Thermal-Fluid Analysis of a Microtubular Solid Oxide Fuel Cell , 2008 .

[93]  Siwei Wang,et al.  Fabrication and characterization of anode-supported micro-tubular solid oxide fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte , 2011 .

[94]  F. Hamdullahpur,et al.  Performance Evaluation of Different Configurations of Biogas-Fuelled SOFC Micro-CHP Systems for Residential Applications , 2010 .

[95]  Takashi Hibino,et al.  Recent advances in single-chamber solid oxide fuel cells: A review , 2007 .

[96]  Viola Birss,et al.  Oxygen Reduction at LSM–YSZ Cathodes Deposited on Anode-Supported Microtubular Solid Oxide Fuel Cells , 2009 .

[97]  Bjarne A. Foss,et al.  Modeling and control of a SOFC-GT-based autonomous power system , 2007 .

[98]  Toshiaki Yamaguchi,et al.  Fabrication of needle-type micro SOFCs for micro power devices , 2008 .

[99]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[100]  Lide M. Rodriguez-Martinez,et al.  Tubular Metal Supported SOFC Development for Domestic Power Generation , 2009, ECS Transactions.

[101]  Andrei G. Fedorov,et al.  Spectral Radiative Heat Transfer Analysis of the Planar SOFC , 2005 .

[102]  Mark J.H. Simmons,et al.  CFD to predict temperature profile for scale up of micro-tubular SOFC stacks , 2004 .

[103]  Werner Lehnert,et al.  Modelling of gas transport phenomena in SOFC anodes , 2000 .

[104]  Vladislav A. Sadykov,et al.  Structured catalyst supports and catalysts for the methane indirect internal steam reforming in the intermediate temperature SOFC , 2009 .

[105]  Andrei G. Fedorov,et al.  Radiation heat transfer analysis of the monolith type solid oxide fuel cell , 2003 .

[106]  Nigel Sammes,et al.  Performance Degradation of Microtubular SOFCs Operating in the Intermediate-Temperature Range , 2009 .

[107]  Jonathan Powell,et al.  The unification of paste rheologies for the co-extrusion of solid oxide fuel cells , 2009 .

[108]  Yoshinobu Fujishiro,et al.  Fabrication and characterization of components for cube shaped micro tubular SOFC bundle , 2007 .

[109]  J. Zhu,et al.  Thermal Evaporation of Pure Ag in SOFC-Relevant Environments , 2007 .

[110]  Norbert H. Menzler,et al.  Durability of Ni anodes during reoxidation cycles , 2010 .

[111]  Miguel A. Laguna-Bercero,et al.  Steam Electrolysis Using a Microtubular Solid Oxide Fuel Cell , 2010 .

[112]  D. Daggett,et al.  Hybrid fuel cell power in aircraft , 2008, IEEE Industry Applications Magazine.

[113]  K. Kendall,et al.  Cycling of three solid oxide fuel cell types , 2007 .

[114]  Paul A. Lessing,et al.  A review of sealing technologies applicable to solid oxide electrolysis cells , 2007 .

[115]  Massimo Santarelli,et al.  Solid oxide fuel based auxiliary power unit for regional jets: Design and mission simulation with different cell geometries , 2010 .

[116]  Yoshitaka Inui,et al.  Three dimensional analysis of planar solid oxide fuel cell stack considering radiation , 2007 .

[117]  Vinod M. Janardhanan,et al.  Numerical study of mass and heat transport in solid-oxide fuel cells running on humidified methane , 2007 .

[118]  Dehua Dong,et al.  YSZ-based SOFC with modified electrode/electrolyte interfaces for operating at temperature lower than 650 °C , 2008 .

[119]  Christie-Joy Brodrick,et al.  Analysis of potential fuel consumption and emissions reductions from fuel cell auxiliary power units (APUs) in long-haul trucks , 2007 .

[120]  Steven J. Visco,et al.  A braze system for sealing metal-supported solid oxide fuel cells , 2006 .

[121]  Ahmad K. Sleiti Performance of tubular Solid Oxide Fuel Cell at reduced temperature and cathode porosity , 2010 .

[122]  Shung-Ik Lee,et al.  Thin film solid oxide fuel cells with copper cermet anodes , 2010 .

[123]  Masashi Mori,et al.  La0.6Sr0.4Co0.2Fe0.8O3 − δ Current Collectors via Ag Infiltration for Microtubular Solid Oxide Fuel Cells with Intermediate Temperature Operation , 2009 .

[124]  Zi-Feng Ma,et al.  Preparation of electrolyte membranes for micro tubular solid oxide fuel cells , 2008 .

[125]  Vinod M. Janardhanan,et al.  CFD analysis of a solid oxide fuel cell with internal reforming : Coupled interactions of transport, heterogeneous catalysis and electrochemical processes , 2006 .

[126]  R. S. Gemmen,et al.  Evaluation of fuel cell system efficiency and degradation at development and during commercialization , 2006 .

[127]  Paul Bowen,et al.  Fabrication and Characterisation of Cathode Support-tubes for Micro-tubular SOFC Application , 2009 .

[128]  Toshiaki Yamaguchi,et al.  Novel Electrode-Supported Honeycomb Solid Oxide Fuel Cell: Design and Fabrication , 2010 .

[129]  Bin Lin,et al.  An anode-supported micro-tubular solid oxide fuel cell with redox stable composite cathode , 2010 .

[130]  Nigel P. Brandon,et al.  Thermodynamics and Kinetics of the Interaction of Carbon and Sulfur with Solid Oxide fuel Cell Anodes , 2009 .

[131]  R. Mark Ormerod Solid oxide fuel cells. , 2003, Chemical Society reviews.

[132]  John S. Hardy,et al.  Dual-atmosphere tolerance of Ag–CuO-based air braze , 2007 .

[133]  Takeshi Saito,et al.  Development of Two Types of Tubular SOFCS at TOTO , 2008 .

[134]  Yanhai Du,et al.  Fabrication and characterization of tubular solid oxide fuel cells , 2007 .

[135]  Ilan Riess,et al.  Mixed ionic–electronic conductors—material properties and applications , 2003 .

[136]  Stefano Cordiner,et al.  The Use of a High Temperature Wind Tunnel for MT-SOFC Testing—Part I: Detailed Experimental Temperature Measurement of an MT-SOFC Using an Avant-Garde High Temperature Wind Tunnel and Various Measurement Techniques , 2010 .

[137]  Daniel Favrat,et al.  Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers , 2003 .

[138]  Dimitris Sarantaridis,et al.  Redox Cycling of Ni‐Based Solid Oxide Fuel Cell Anodes: A Review , 2007 .

[139]  K. Foger,et al.  Solid oxide electrolyte fuel cell review , 1996 .

[140]  高橋 武彦,et al.  Science and technology of ceramic fuel cells , 1995 .

[141]  K. Ho,et al.  Influence of Sulfonationity of Epoxy-Based Semi-Interpenetrating Polymer Networks of Sulfonated Polyimides as Proton Exchange Membranes on the Performance of Fuel Cell Application , 2010 .

[142]  N. Sammes,et al.  Design and fabrication of a 100 W anode supported micro-tubular SOFC stack , 2005 .

[143]  Zi-Feng Ma,et al.  A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells , 2008 .

[144]  P. Sarkar,et al.  Anode‐Supported Tubular Micro‐Solid Oxide Fuel Cell , 2007 .

[145]  Takuto Araki,et al.  Simulation Study for the Series Connected Bundles of Microtubular SOFCs , 2010 .

[146]  Ian S. Metcalfe,et al.  Microstructure and performance of novel Ni anode for hollow fibre solid oxide fuel cells , 2009 .

[147]  Toshiaki Yamaguchi,et al.  Current collecting efficiency of micro tubular SOFCs , 2007 .

[148]  Kenji Murata,et al.  Morphology Control of Ni-GDC Cermet Anode for Lower Temperature SOFC , 2007 .

[149]  T. Miyashita,et al.  Necessity of verification of leakage currents using Sm doped Ceria electrolytes in SOFCs , 2006 .

[150]  Zhenguo Yang,et al.  Observations on the structural degradation of silver during simultaneous exposure to oxidizing and reducing environments , 2004 .

[151]  Bingwen Wang,et al.  A review of AC impedance modeling and validation in SOFC diagnosis , 2007 .

[152]  Yanhai Du,et al.  Thermal Stability of Portable Microtubular SOFCs and Stacks , 2008 .

[153]  M. Khaleel,et al.  Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks , 2003 .

[154]  Chenghao Yang,et al.  Micro-tubular solid oxide fuel cells fabricated by phase-inversion method , 2010 .

[155]  Jon G. Pharoah,et al.  Modeling radiation heat transfer with participating media in solid oxide fuel cells , 2006 .

[156]  Francesco Calise,et al.  Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System , 2006 .

[157]  Nigel Sammes,et al.  Mechanical properties of micro-tubular solid oxide fuel cell anodes , 2009 .

[158]  P. Sarkar,et al.  Synthesis and microstructural manipulation of ceramics by electrophoretic deposition , 2004 .

[159]  Koichi Eguchi,et al.  10th International Symposium on Solid Oxide Fuel Cells , 2007 .

[160]  O. K. Krasnikova,et al.  Coiled smooth-tubular heat exchanger with improved heat properties , 1997 .

[161]  Biao Huang,et al.  Dynamic modeling of a finite volume of solid oxide fuel cell: The effect of transport dynamics , 2006 .

[162]  Raghunathan Rengaswamy,et al.  Isothermal models for anode-supported tubular solid oxide fuel cells , 2007 .

[163]  Masashi Mori,et al.  The electrochemical cell temperature estimation of micro-tubular SOFCs during the power generation , 2008 .

[164]  Francesco Calise,et al.  Full load synthesis/design optimization of a hybrid SOFC–GT power plant , 2007 .

[165]  Robert J. Kee,et al.  Solid Oxide Fuel Cells: Operating Principles, Current Challenges, and the Role of Syngas , 2008 .

[166]  Kevin Kendall,et al.  Formulating liquid ethers for microtubular SOFCs , 2006 .

[167]  N. Sammes,et al.  Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects , 2005 .

[168]  Sangho Yoon,et al.  Effects of low hydrocarbons on the solid oxide fuel cell anode , 2010 .

[169]  Toshiaki Yamaguchi,et al.  Effect of anode microstructure on the performance of micro tubular SOFCs , 2009 .

[170]  Masashi Mori,et al.  Development of Evaluation Technologies for Microtubular SOFCs Under Pressurized Conditions , 2008 .

[171]  Randall Gemmen,et al.  Degradation measurement and analysis for cells and stacks , 2008 .

[172]  Douglas G. Ivey,et al.  Thermal analysis of the cyclic reduction and oxidation behaviour of SOFC anodes , 2005 .

[173]  Kevin Kendall,et al.  Cell temperature measurements in micro-tubular, single-chamber, solid oxide fuel cells (MT–SC–SOFCs) , 2010 .

[174]  U. Stimming,et al.  Recent anode advances in solid oxide fuel cells , 2007 .

[175]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .