$\mathcal{P}_m$ Interior Penalty Nonconforming Finite Element Methods for $2m$-th Order PDEs in $\mathbb{R}^n$
暂无分享,去创建一个
[1] J. Bramble,et al. Triangular elements in the finite element method , 1970 .
[2] Cheng Wang,et al. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..
[3] Thirupathi Gudi,et al. An interior penalty method for a sixth-order elliptic equation , 2011 .
[4] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[5] Mira Schedensack,et al. A New Discretization for mth-Laplace Equations with Arbitrary Polynomial Degrees , 2015, SIAM J. Numer. Anal..
[6] A. Ženíšek. Interpolation polynomials on the triangle , 1970 .
[7] Rui Ma,et al. A new a priori error estimate of nonconforming finite element methods , 2014 .
[8] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[9] Cheng Wang,et al. An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..