Joint Eigenvalue Decomposition of Non-Defective Matrices Based on the LU Factorization With Application to ICA

In this paper we propose a fast and efficient Jacobi-like approach named JET (Joint Eigenvalue decomposition based on Triangular matrices) for the Joint EigenValue Decomposition (JEVD) of a set of real or complex non-defective matrices based on the LU factorization of the matrix of eigenvectors. Contrarily to classical Jacobi-like JEVD methods, the iterative procedure of the JET approach can be reduced to the search for only one of the two triangular matrices involved in the factorization of the matrix of eigenvectors, hence decreasing the numerical complexity. Two variants of the JET technique, namely JET-U and JET-O, which correspond to the optimization of two different cost functions are described in detail and these are extended to the complex case. Numerical simulations show that in many practical cases the JET approach provides more accurate estimation of the matrix of eigenvectors than its competitors and that the lowest numerical complexity is consistently achieved by the JET-U algorithm. In addition, we illustrate in the ICA context the interest of being able to solve efficiently the (non-orthogonal) JEVD problem. More particularly, based on our JET-U algorithm, we propose a more robust version of an existing ICA method, named MICAR-U. The identifiability of the latter is studied and proved under some conditions. Computer results given in the context of brain interfaces show the better ability of MICAR-U to denoise simulated electrocortical data compared to classical ICA techniques for low signal to noise ratio values.

[1]  M. Haardt,et al.  A closed-form solution for multilinear PARAFAC decompositions , 2008, 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop.

[2]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[3]  C. Jacobi Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .

[4]  Sergio Cruces,et al.  On a new blind signal extraction algorithm: different criteria and stability analysis , 2002, IEEE Signal Processing Letters.

[5]  Visa Koivunen,et al.  Blind separation methods based on Pearson system and its extensions , 2002, Signal Process..

[6]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1998, IEEE Trans. Signal Process..

[7]  Arie Yeredor,et al.  Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation , 2002, IEEE Trans. Signal Process..

[8]  José Millet-Roig,et al.  Atrial activity extraction for atrial fibrillation analysis using blind source separation , 2004, IEEE Transactions on Biomedical Engineering.

[9]  Peter Strobach Bi-iteration multiple invariance subspace tracking and adaptive ESPRIT , 2000, IEEE Trans. Signal Process..

[10]  Antoine Souloumiac,et al.  Jacobi Angles for Simultaneous Diagonalization , 1996, SIAM J. Matrix Anal. Appl..

[11]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[12]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[13]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[14]  J.C. Sanchez,et al.  Analysis ECoG features for movement execution using denoising source separation , 2008, 2008 IEEE Workshop on Machine Learning for Signal Processing.

[15]  Laurent Albera,et al.  Multi-way space-time-wave-vector analysis for EEG source separation , 2012, Signal Process..

[16]  Laurent Albera,et al.  Joint Eigenvalue Decomposition Using Polar Matrix Factorization , 2010, LVA/ICA.

[17]  Laurent Albera,et al.  Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM) , 2005, IEEE Transactions on Signal Processing.

[18]  X. Luciani,et al.  Canonical Polyadic Decomposition based on joint eigenvalue decomposition , 2014 .

[19]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[20]  A. Cichocki,et al.  Robust whitening procedure in blind source separation context , 2000 .

[21]  Tosio Kato A Short Introduction to Perturbation Theory for Linear Operators , 1982 .

[22]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[23]  Laurent Albera,et al.  Iterative methods for the canonical decomposition of multi-way arrays: Application to blind underdetermined mixture identification , 2011, Signal Process..

[24]  Ed F. Deprettere,et al.  Azimuth and elevation computation in high resolution DOA estimation , 1992, IEEE Trans. Signal Process..

[25]  C. Jacobi,et al.  C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .

[26]  Andreas Ziehe,et al.  TDSEP { an e(cid:14)cient algorithm for blind separation using time structure , 1998 .

[27]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[28]  Cédric Févotte,et al.  Two contributions to blind source separation using time-frequency distributions , 2004, IEEE Signal Processing Letters.

[29]  Ed F. Deprettere,et al.  Analysis of joint angle-frequency estimation using ESPRIT , 2003, IEEE Trans. Signal Process..

[30]  P. Comon,et al.  ICAR: a tool for blind source separation using fourth-order statistics only , 2005, IEEE Transactions on Signal Processing.

[31]  Axel Ruhe,et al.  On the quadratic convergence of a generalization of the Jacobi Method to arbitrary matrices , 1968 .

[32]  Laurent Albera,et al.  Semi-algebraic canonical decomposition of multi-way arrays and Joint Eigenvalue Decomposition , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[33]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[34]  Lotfi Senhadji,et al.  ICA-based EEG denoising: a comparative analysis of fifteen methods , 2012 .

[35]  Karim Abed-Meraim,et al.  A new Jacobi-like method for joint diagonalization of arbitrary non-defective matrices , 2009, Appl. Math. Comput..

[36]  Antoine Souloumiac,et al.  Nonorthogonal Joint Diagonalization by Combining Givens and Hyperbolic Rotations , 2009, IEEE Transactions on Signal Processing.

[37]  Lieven De Lathauwer,et al.  Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures , 2007, IEEE Transactions on Signal Processing.

[38]  Xiqi Gao,et al.  Simultaneous Diagonalization With Similarity Transformation for Non-Defective Matrices , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[39]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[40]  P. McCullagh Tensor Methods in Statistics , 1987 .

[41]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources , 1999, Neural Comput..

[42]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[43]  Sergio Cruces,et al.  Novel blind source separation algorithms using cumulants , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).