Uniformity and Diversity of Cortical Projections to Precuneate Areas in the Macaque Monkey: What Defines Area PGm?

We report on the corticocortical connections of areas on the mesial surface of the macaque posterior parietal cortex, based on 10 retrograde tracer injections targeting different parts of the precuneate gyrus. Analysis of afferent connections supported the existence of two areas: PGm (also known as 7 m) and area 31. Both areas received major afferents from the V6A complex and from the external subdivision of area 23, but they differed in most other aspects. Area 31 showed greater emphasis on connections with premotor and parietal sensorimotor areas, whereas PGm received a greater proportion of its afferents from visuomotor structures involved in spatial cognition (including the lateral intraparietal cortex, inferior parietal lobule, and the putative visual areas in the ventral part of the precuneus). Medially, the anterior cingulate cortex (area 24) preferentially targeted area 31, whereas retrosplenial areas preferentially targeted PGm. These results indicate that earlier views on the connections of PGm were based on tracer injections that included parts of adjacent areas (including area 31), and prompt a reassessment of the limits of PGm. Our findings are compatible with a primary role of PGm in visuospatial cognition (including navigation), while supporting a role for area 31 in sensorimotor planning and coordination.

[1]  Lauretta Passarelli,et al.  Cortical Connections of Area V6Av in the Macaque: A Visual-Input Node to the Eye/Hand Coordination System , 2011, The Journal of Neuroscience.

[2]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[3]  G. V. Van Hoesen,et al.  Neural connections of the posteromedial cortex in the macaque , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  G. Luppino,et al.  ß Federation of European Neuroscience Societies Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey , 2022 .

[5]  H. Sakata,et al.  Context-dependent place-selective responses of the neurons in the medial parietal region of macaque monkeys. , 2010, Cerebral cortex.

[6]  B. Vogt,et al.  Architecture and neurocytology of monkey cingulate gyrus , 2005, The Journal of comparative neurology.

[7]  C. Galletti,et al.  The medial parietal occipital areas in the macaque monkey , 2015, Visual Neuroscience.

[8]  O. Grüsser,et al.  Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey , 1994, The Journal of comparative neurology.

[9]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[10]  Stefan Everling,et al.  Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI , 2015, NeuroImage.

[11]  R. Andersen,et al.  Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. , 1998, Journal of neurophysiology.

[12]  A. Angelucci,et al.  Resolving the organization of the third tier visual cortex in primates: A hypothesis-based approach , 2015, Visual Neuroscience.

[13]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[14]  Kathleen J. Burman,et al.  The cortical motor system of the marmoset monkey (Callithrix jacchus) , 2015, Neuroscience Research.

[15]  F. Lacquaniti,et al.  Visual Control of Hand‐reaching Movement: Activity in Parietal Area 7m , 1997, The European journal of neuroscience.

[16]  G. Leichnetz Connections of the medial posterior parietal cortex (area 7m) in the monkey , 2001, The Anatomical record.

[17]  G. Orban,et al.  Default Mode of Brain Function in Monkeys , 2011, The Journal of Neuroscience.

[18]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[19]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[20]  C. Galletti,et al.  Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto‐occipital sulcus of the macaque: a cytoarchitectonic study , 2005, The European journal of neuroscience.

[21]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[22]  Leslie G. Ungerleider,et al.  Scene-Selective Cortical Regions in Human and Nonhuman Primates , 2011, The Journal of Neuroscience.

[23]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[24]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[25]  Michela Gamberini,et al.  Is the Medial Posterior Parietal Area V6A a Single Functional Area? , 2011, The Journal of Neuroscience.

[26]  B. Seltzer,et al.  Architectonics and cortical connections of the upper bank of the superior temporal sulcus in the rhesus monkey: An analysis in the tangential plane , 2003, The Journal of comparative neurology.

[27]  B. Seltzer,et al.  Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: Evidence for subdivisions of superior temporal polysensory cortex , 1995, The Journal of comparative neurology.

[28]  Jason B. Mattingley,et al.  Medial Parietal Cortex Encodes Perceived Heading Direction in Humans , 2010, The Journal of Neuroscience.

[29]  Sophia Bakola,et al.  Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey , 2014, The Journal of comparative neurology.

[30]  Lauretta Passarelli,et al.  Cortical Connectivity Suggests a Role in Limb Coordination for Macaque Area PE of the Superior Parietal Cortex , 2013, The Journal of Neuroscience.

[31]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: I. Three‐dimensional and cytoarchitectonic organization , 2000, The Journal of comparative neurology.

[32]  Claus C Hilgetag,et al.  Graded classes of cortical connections: quantitative analyses of laminar projections to motion areas of cat extrastriate cortex , 2005, The European journal of neuroscience.

[33]  Elena Borra,et al.  Architectonic organization of the inferior parietal convexity of the macaque monkey , 2006, The Journal of comparative neurology.

[34]  C. Galletti,et al.  The relationship between V6 and PO in macaque extrastriate cortex , 2005, The European journal of neuroscience.

[35]  Guy A Orban,et al.  Functional definitions of parietal areas in human and non-human primates , 2016, Proceedings of the Royal Society B: Biological Sciences.

[36]  S. Ferraina,et al.  Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. , 2011, Journal of neurophysiology.

[37]  W. Suzuki,et al.  Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  C. Galletti,et al.  Common neural substrate for processing depth and direction signals for reaching in the monkey medial posterior parietal cortex. , 2014, Cerebral cortex.

[39]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[40]  J. Culham,et al.  The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? , 2006, Neuropsychologia.

[41]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: III. Cortical efferents , 2003, The Journal of comparative neurology.

[42]  Lauretta Passarelli,et al.  Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey , 2009, The Journal of comparative neurology.

[43]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[44]  Lauretta Passarelli,et al.  Cortical connections of parietal field PEc in the macaque: linking vision and somatic sensation for the control of limb action. , 2010, Cerebral cortex.

[45]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[46]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[47]  K. Zilles,et al.  Functional neuroanatomy of the primate isocortical motor system , 2000, Anatomy and Embryology.

[48]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[49]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[50]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[51]  Ruey-Song Huang,et al.  Neural Substrates Underlying the Passive Observation and Active Control of Translational Egomotion , 2015, The Journal of Neuroscience.

[52]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[53]  M. Goldberg,et al.  Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. , 1996, Journal of neurophysiology.

[54]  J. Kalaska,et al.  Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: Specification of Multiple Direction Choices and Final Selection of Action , 2005, Neuron.

[55]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[56]  M. Honda,et al.  The role of rostral Brodmann area 6 in mental-operation tasks: an integrative neuroimaging approach. , 2002, Cerebral cortex.

[57]  D. Pandya,et al.  Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern , 1973, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[58]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[59]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[60]  Tristan A. Chaplin,et al.  A Specialized Area in Limbic Cortex for Fast Analysis of Peripheral Vision , 2012, Current Biology.

[61]  P. B. Cipolloni,et al.  Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey , 2004, The Journal of comparative neurology.

[62]  Yq Liu,et al.  Intention and Attention: Different functional roles for LIPd and LIPv , 2010, Nature Neuroscience.

[63]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[64]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[65]  Kenneth H Britten,et al.  Area MST and heading perception in macaque monkeys. , 2002, Cerebral cortex.

[66]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[67]  Hideo Sakata,et al.  Navigation-associated medial parietal neurons in monkeys , 2006, Proceedings of the National Academy of Sciences.

[68]  C. Cavada,et al.  The Visual Parietal Areas in the Macaque Monkey: Current Structural Knowledge and Ignorance , 2001, NeuroImage.