Generalized Transitional Markov Chain Monte Carlo Sampling Technique for Bayesian Inversion

In the context of Bayesian inversion for scientific and engineering modeling, Markov chain Monte Carlo sampling strategies are the benchmark due to their flexibility and robustness in dealing with arbitrary posterior probability density functions (PDFs). However, these algorithms been shown to be inefficient when sampling from posterior distributions that are high-dimensional or exhibit multi-modality and/or strong parameter correlations. In such contexts, the sequential Monte Carlo technique of transitional Markov chain Monte Carlo (TMCMC) provides a more efficient alternative. Despite the recent applicability for Bayesian updating and model selection across a variety of disciplines, TMCMC may require a prohibitive number of tempering stages when the prior PDF is significantly different from the target posterior. Furthermore, the need to start with an initial set of samples from the prior distribution may present a challenge when dealing with implicit priors, e.g. based on feasible regions. Finally, TMCMC can not be used for inverse problems with improper prior PDFs that represent lack of prior knowledge on all or a subset of parameters. In this investigation, a generalization of TMCMC that alleviates such challenges and limitations is proposed, resulting in a tempering sampling strategy of enhanced robustness and computational efficiency. Convergence analysis of the proposed sequential Monte Carlo algorithm is presented, proving that the distance between the intermediate distributions and the target posterior distribution monotonically decreases as the algorithm proceeds. The enhanced efficiency associated with the proEmail address: mkhalil@sandia.gov (Mohammad Khalil) ar X iv :2 11 2. 02 18 0v 1 [ st at .C O ] 3 D ec 2 02 1 posed generalization is highlighted through a series of test inverse problems and an engineering application in the oil and gas industry.

[1]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[2]  W. G. Lesso,et al.  The Principles and Procedures of Geosteering , 1996 .

[3]  Jiefu Chen,et al.  Parallel multiple-chain DRAM MCMC for large-scale geosteering inversion and uncertainty quantification , 2019, Journal of Petroleum Science and Engineering.

[4]  W. L. Dunn,et al.  Exploring Monte Carlo Methods , 2011 .

[5]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[6]  Dilshad R Akkam Veettil,et al.  Bayesian Geosteering Using Sequential Monte Carlo Methods , 2020 .

[7]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[8]  Marina Vannucci,et al.  Nonlinear state-space modeling approaches to real-time autonomous geosteering , 2020, Journal of Petroleum Science and Engineering.

[9]  Brian Munsky,et al.  BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO. , 2020, International journal for uncertainty quantification.

[10]  Daniel Bedoya-Ruiz,et al.  Identification of Bouc-Wen type models using the Transitional Markov Chain Monte Carlo method , 2015 .

[11]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[12]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[13]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[14]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[15]  Alexandros Beskos,et al.  Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A Case Study for the Navier-Stokes Equations , 2013, SIAM/ASA J. Uncertain. Quantification.

[16]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[17]  Alexandros Beskos,et al.  On the convergence of adaptive sequential Monte Carlo methods , 2013, The Annals of Applied Probability.

[18]  Jonathan Baxter,et al.  A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling , 1997, Machine Learning.

[19]  A. Abubakar,et al.  A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements , 2004 .

[20]  P. Alam ‘K’ , 2021, Composites Engineering.

[21]  J. Beck,et al.  Important sampling in high dimensions , 2003 .

[22]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[23]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[24]  Christina Freytag,et al.  Using Mpi Portable Parallel Programming With The Message Passing Interface , 2016 .

[25]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[26]  T. Catanach Computational Methods for Bayesian Inference in Complex Systems , 2017 .

[27]  Dzevat Omeragic,et al.  New Directional Electromagnetic Tool For Proactive Geosteering And Accurate Formation Evaluation While Drilling , 2005 .

[28]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[29]  James L. Beck,et al.  Bayesian Updating and Uncertainty Quantification using Sequential Tempered MCMC with the Rank-One Modified Metropolis Algorithm , 2018, 1804.08738.

[30]  Aria Abubakar,et al.  Schemes for Improving Efficiency of Pixel-Based Inversion Algorithms for Electromagnetic Logging-While-Drilling Measurements , 2012 .

[31]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[32]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[33]  B. Minsley A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .

[34]  P. L. Green Bayesian system identification of a nonlinear dynamical system using a novel variant of Simulated Annealing , 2015 .

[35]  Chris Morriss,et al.  Full 3D Deep Directional Resistivity Measurements Optimize Well Placement and Provide Reservoir-Scale Imaging While Drilling , 2014 .

[36]  Iason Papaioannou,et al.  Transitional Markov Chain Monte Carlo: Observations and Improvements , 2016 .

[37]  Wasserman,et al.  Bayesian Model Selection and Model Averaging. , 2000, Journal of mathematical psychology.

[38]  Jianye Ching,et al.  Application of the transitional Markov chain Monte Carlo algorithm to probabilistic site characterization , 2016 .

[39]  Dominique Poirel,et al.  Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems , 2015, Nonlinear Dynamics.

[40]  M. Sambridge,et al.  Transdimensional inference in the geosciences , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Radford M. Neal Optimal Proposal Distributions and Adaptive MCMC , 2008 .

[42]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[43]  P. Koumoutsakos,et al.  X-TMCMC: Adaptive kriging for Bayesian inverse modeling , 2015 .

[44]  Costas Papadimitriou,et al.  Bayesian Annealed Sequential Importance Sampling: An Unbiased Version of Transitional Markov Chain Monte Carlo , 2018 .

[45]  Pascal Vincent,et al.  Parallel Tempering for Training of Restricted Boltzmann Machines , 2010 .

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  K. Kullawan,et al.  A decision analytic approach to geosteering operations , 2014 .

[48]  Cosmin Safta,et al.  Transitional Markov Chain Monte Carlo Sampler in UQTk. , 2020 .

[49]  Paolo Ferraris,et al.  Geosteering And/Or Reservoir Characterization The Prowess Of New-Generation Lwd Tools , 2010 .

[50]  Junho Song,et al.  System Identification of Spatial Distribution of Structural Parameters Using Modified Transitional Markov Chain Monte Carlo Method , 2017 .

[51]  P. L. Green Bayesian system identification of dynamical systems using large sets of training data: A MCMC solution , 2015 .

[52]  Cosmin Safta,et al.  Sensitivity-Informed Bayesian Inference for Home PLC Network Models with Unknown Parameters , 2021, Energies.

[53]  Zhu Han,et al.  Parallel tempered trans-dimensional Bayesian inference for the inversion of ultra-deep directional logging-while-drilling resistivity measurements , 2020 .

[54]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[55]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[56]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[57]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[58]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[59]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[60]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[61]  Zhu Han,et al.  Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method , 2018 .

[62]  Chris Morriss,et al.  Application of Automatic Stochastic Inversion for Multilayer Reservoir Mapping while Drilling Measurements , 2015 .

[63]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[64]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[65]  Christian P. Robert,et al.  Accelerating MCMC algorithms , 2018, Wiley interdisciplinary reviews. Computational statistics.

[66]  Dominique Poirel,et al.  Bayesian model selection using automatic relevance determination for nonlinear dynamical systems , 2017 .

[67]  J. Ching,et al.  Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .

[68]  Michael Thiel,et al.  High-Fidelity Real-Time Imaging With Electromagnetic Logging-While-Drilling Measurements , 2017, IEEE Transactions on Computational Imaging.

[69]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[70]  Yin-Fu Jin,et al.  Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method , 2019, Acta Geotechnica.

[71]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[72]  Kerry Key,et al.  1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers , 2009 .