Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity

The fluid–solid interface-tracking/interface-capturing technique (FSITICT) with arbitrary Lagrangian–Eulerian interface-tracking and Eulerian interface-capturing is applied to computations of fluid–structure interaction problems with flapping and contact. The two-dimensional model with contacting flaps is intended to represent a valve problem from biomechanics. The FSITICT is complemented with local mesh adaptivity, which significantly increases the performance of the interface-capturing component of the method. The test computations presented demonstrate how our approach works.

[1]  S. Giuliani,et al.  Lagrangian and Eulerian Finite Element Techniques for Transient Fluid-Structure Interaction Problems , 1977 .

[2]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[3]  Graham F. Carey,et al.  Penalty finite element method for the Navier-Stokes equations , 1984 .

[4]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[5]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[6]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[7]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[8]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[9]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[10]  Tayfun E. Tezduyar,et al.  Simulation of multiple spheres falling in a liquid-filled tube , 1996 .

[11]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[12]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[13]  Tayfun E. Tezduyar,et al.  3D Simulation of fluid-particle interactions with the number of particles reaching 100 , 1997 .

[14]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[15]  Marek Behr,et al.  Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces , 1998 .

[16]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[17]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[18]  Tayfun E. Tezduyar,et al.  EDICT for 3D computation of two-fluid interfaces , 2000 .

[19]  Tayfun E. Tezduyar,et al.  Methods for 3D computation of fluid-object interactions in spatially periodic flows , 2001 .

[20]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[21]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[22]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[23]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[24]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[25]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[26]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[27]  A. Quarteroni What mathematics can do for the simulation of blood circulation , 2006 .

[28]  Tayfun E. Tezduyar,et al.  Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .

[29]  Thomas Dunne,et al.  An Eulerian approach to fluid–structure interaction and goal‐oriented mesh adaptation , 2006 .

[30]  Marco Squassina,et al.  Global solutions and finite time blow up for damped semilinear wave equations ? ? The first author w , 2006 .

[31]  Tayfun E. Tezduyar,et al.  A Numerical model based on the mixed interface‐tracking/interface‐capturing technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces , 2007 .

[32]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[33]  Tayfun E. Tezduyar,et al.  Computation of flow problems with the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) , 2007 .

[34]  Hong Zhao,et al.  A fixed-mesh method for incompressible flow-structure systems with finite solid deformations , 2008, J. Comput. Phys..

[35]  Jean-Frédéric Gerbeau,et al.  A partitioned fluid-structure algorithm for elastic thin valves with contact , 2008 .

[36]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[37]  G. Cottet,et al.  EULERIAN FORMULATION AND LEVEL SET MODELS FOR INCOMPRESSIBLE FLUID-STRUCTURE INTERACTION , 2008 .

[38]  Matteo Astorino,et al.  Fluid-structure interaction and multi-body contact. Application to aortic valves , 2009 .

[39]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[40]  Antonio J. Gil,et al.  The Immersed Structural Potential Method for haemodynamic applications , 2010, J. Comput. Phys..

[41]  T. Wick,et al.  Finite elements for fluid–structure interaction in ALE and fully Eulerian coordinates , 2010 .

[42]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[43]  A. Marsden,et al.  A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .

[44]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of parachute clusters , 2011 .

[45]  T. Wick Fluid-structure interactions using different mesh motion techniques , 2011 .

[46]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[47]  Yoichiro Matsumoto,et al.  A full Eulerian finite difference approach for solving fluid-structure coupling problems , 2010, J. Comput. Phys..

[48]  Thomas Wick,et al.  Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to Heart-Valve Dynamics , 2011 .

[49]  Ping He,et al.  A full-Eulerian solid level set method for simulation of fluid–structure interactions , 2011 .

[50]  Thomas Wick,et al.  Solving Monolithic Fluid-Structure Interaction Problems in Arbitrary Lagrangian Eulerian Coordinates with the deal.II Library , 2011 .

[51]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[52]  Yoichiro Matsumoto,et al.  A Review of Full Eulerian Methods for Fluid Structure Interaction Problems , 2012 .

[53]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity , 2012 .

[54]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[55]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[56]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[57]  Thomas Wick,et al.  Goal-Oriented Mesh Adaptivity for Fluid-Structure Interaction with Application to Heart-Valve Settings , 2012 .

[58]  Thomas Richter,et al.  A Fully Eulerian formulation for fluid-structure-interaction problems , 2013, J. Comput. Phys..

[59]  T. Wick Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid-structure interaction computations , 2013 .

[60]  Annalisa Quaini,et al.  Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement , 2012, J. Comput. Phys..

[61]  Thomas Wick,et al.  Fully Eulerian fluid-structure interaction for time-dependent problems , 2013 .