Themo-elasto-viscoplastic modelling of friction stir welding

Abstract A coupled two-dimensional Eulerian thermo-elasto-viscoplastic model has been developed for modelling the friction stir welding process. First, a coupled thermo-viscoplastic analysis is performed to determine the temperature distribution in the full domain and the incompressible material flow around the spinning tool. Next, an elasto-viscoplastic analysis is performed outside the viscoplastic region to compute the residual stress. Both frictional heat and plastic deformation heat generation are considered in the model. Furthermore, this is the only known model computing residual stress accounting for plasticity caused by both thermal expansion and mechanical deformation due to material spinning. The computed residual stress is verified by comparing to experimentally measured data.

[1]  P. Michaleris,et al.  Elasto-visco-plastic analysis of welding residual stress , 2009 .

[2]  P. Michaleris,et al.  Eulerian elasto‐visco‐plastic formulations for residual stress prediction , 2009 .

[3]  Hongwu Zhang,et al.  Numerical studies on controlling of process parameters in friction stir welding , 2009 .

[4]  Xiaoliang Qin,et al.  THERMO-ELASTO-VISCO-PLASTIC MODELLING OF FRICTION STIR WELDING IN AN EULERIAN REFERENCE FRAME , 2009 .

[5]  K. Dang Van,et al.  Modelling of the residual state of friction stir welded plates , 2008 .

[6]  Lionel Fourment,et al.  3D numerical simulation of the three stages of Friction Stir Welding based on friction parameters calibration , 2008 .

[7]  H. Aguir,et al.  Identification of Constitutive Parameters using Hybrid ANN multi-objective optimization procedure , 2008 .

[8]  Lionel Fourment,et al.  Error Estimation And Accurate Mapping Based ALE Formulation For 3D Simulation Of Friction Stir Welding , 2007 .

[9]  Zhili Feng,et al.  Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6 , 2007 .

[10]  Thomas J. Lienert,et al.  Three-dimensional heat and material flow during friction stir welding of mild steel , 2007 .

[11]  F. Roger,et al.  Steady state thermomechanical modelling of friction stir welding , 2006 .

[12]  Livan Fratini,et al.  Design of the friction stir welding tool using the continuum based FEM model , 2006 .

[13]  P. Michaleris,et al.  Comparison of buckling distortion propensity for SAW, GMAW, and FSW , 2006 .

[14]  Paul A. Colegrove,et al.  3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile , 2005 .

[15]  S. Nemat-Nasser,et al.  Thermomechanical response of HSLA-65 steel plates: experiments and modeling , 2005 .

[16]  R Kovacevic,et al.  Thermomechanical modelling and force analysis of friction stir welding by the finite element method , 2004 .

[17]  V. Lubarda Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics , 2004 .

[18]  H. Schmidt,et al.  A local model for the thermomechanical conditions in friction stir welding , 2004 .

[19]  K. Bowman Mechanical Behavior of Materials , 2003 .

[20]  Anthony P. Reynolds,et al.  Structure, Properties, and Residual Stress of 304L Stainless Steel Friction Stir Welds , 2003 .

[21]  Antoinette M. Maniatty,et al.  Stabilized finite element method for viscoplastic flow: formulation with state variable evolution , 2003 .

[22]  Patrick Ulysse,et al.  Three-dimensional modeling of the friction stir-welding process , 2002 .

[23]  O. A. Vanli,et al.  Distortion Analysis of Welded Stiffeners , 2001 .

[24]  Pingsha Dong,et al.  Coupled thermomechanical analysis of friction stir welding process using simplified models , 2001 .

[25]  A. Reynolds,et al.  Finite element simulation of material flow in friction stir welding , 2001 .

[26]  P. Michaleris,et al.  Optimization of thermal processes using an Eulerian formulation and application in laser surface hardening , 2000 .

[27]  Daniel A. Tortorelli,et al.  A displacement-based reference frame formulation for steady-state thermo-elasto-plastic material processes , 1999 .

[28]  Xinhai Qi,et al.  Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6061-T6 , 1998 .

[29]  M. Gu,et al.  Steady State Thermal Analysis of Welds with Filler Metal Addition , 1993 .

[30]  E. Ohmura,et al.  Theoretical analysis of laser transformation hardening process of hypoeutectoid steel based on kinetics , 1991 .

[31]  Antoinette M. Maniatty,et al.  An Eulerian elasto-viscoplastic formulation for steady-state forming processes , 1991 .

[32]  Erik G. Thompson,et al.  A flow formulation for rate equilibrium equations , 1990 .

[33]  L. Anand,et al.  An internal variable constitutive model for hot working of metals , 1989 .

[34]  M. Boyce,et al.  On the kinematics of finite strain plasticity , 1989 .

[35]  Paul R. Dawson,et al.  A comparison of Galerkin and streamline techniques for integrating strains from an Eulerian flow field , 1985 .

[36]  R. Michel Elastic Constants and Coefficients of Thermal Expansion of Piping Materials Proposed for 1954 Code for Pressure Piping , 1955, Journal of Fluids Engineering.

[37]  C. J. Smithells,et al.  Metals reference book , 1949 .