Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization

[1]  Kevin D Dorfman,et al.  Microfluidic chemostat for measuring single cell dynamics in bacteria. , 2013, Lab on a chip.

[2]  Bianca Sclavi,et al.  Gene silencing and large-scale domain structure of the E. coli genome. , 2012, Molecular bioSystems.

[3]  O. Espéli,et al.  A MatP–divisome interaction coordinates chromosome segregation with cell division in E. coli , 2012, The EMBO journal.

[4]  E. Dimitriadis,et al.  Galactose repressor mediated intersegmental chromosomal connections in Escherichia coli , 2012, Proceedings of the National Academy of Sciences.

[5]  Marco Cosentino Lagomarsino,et al.  NuST: analysis of the interplay between nucleoid organization and gene expression , 2012, Bioinform..

[6]  Michael A Thompson,et al.  Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. , 2012, Biophysical journal.

[7]  J. Theriot,et al.  Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci , 2012, Proceedings of the National Academy of Sciences.

[8]  Kevin D Dorfman,et al.  Physical descriptions of the bacterial nucleoid at large scales, and their biological implications , 2012, Reports on progress in physics. Physical Society.

[9]  O. Espéli,et al.  Long-Range Chromosome Organization in E. coli: A Site-Specific System Isolates the Ter Macrodomain , 2012, PLoS genetics.

[10]  Francisco Ortega,et al.  Microrheology of Complex Fluids , 2011 .

[11]  Andrew Travers,et al.  Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle , 2011, Proceedings of the National Academy of Sciences.

[12]  Cherisse R. Loucks,et al.  Chromosome Organization by a Nucleoid-Associated Protein in Live Bacteria , 2011, Science.

[13]  David C. Grainger,et al.  Chromosomal Macrodomains and Associated Proteins: Implications for DNA Organization and Replication in Gram Negative Bacteria , 2011, PLoS genetics.

[14]  N. Kleckner,et al.  Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps , 2011, Proceedings of the National Academy of Sciences.

[15]  Bruno Bassetti,et al.  Gene clusters reflecting macrodomain structure respond to nucleoid perturbations. , 2010, Molecular bioSystems.

[16]  J. Meile,et al.  The terminal region of the E. coli chromosome localises at the periphery of the nucleoid , 2011, BMC Microbiology.

[17]  J. Theriot,et al.  Subdiffusive motion of a polymer composed of subdiffusive monomers. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Paul A. Wiggins,et al.  Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament , 2010, Proceedings of the National Academy of Sciences.

[19]  F. MacKintosh,et al.  Active cellular materials. , 2010, Current opinion in cell biology.

[20]  L. Shapiro,et al.  Bacterial chromosome organization and segregation. , 2010, Cold Spring Harbor perspectives in biology.

[21]  A. Travers,et al.  Coordination of genomic structure and transcription by the main bacterial nucleoid‐associated protein HU , 2010, EMBO reports.

[22]  J. Theriot,et al.  Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. , 2010, Physical review letters.

[23]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[24]  E. Barkai,et al.  Ergodic properties of fractional Brownian-Langevin motion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  E. Rocha The organization of the bacterial genome. , 2008, Annual review of genetics.

[26]  S. Ben-Yehuda,et al.  Spatial organization of a replicating bacterial chromosome , 2008, Proceedings of the National Academy of Sciences.

[27]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[28]  O. Espéli,et al.  DNA dynamics vary according to macrodomain topography in the E. coli chromosome , 2008, Molecular microbiology.

[29]  Pietro Cicuta,et al.  Microrheology: a review of the method and applications. , 2007, Soft matter.

[30]  F. Hansen,et al.  The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves , 2006, Molecular microbiology.

[31]  D. Sherratt,et al.  The two Escherichia coli chromosome arms locate to separate cell halves. , 2006, Genes & development.

[32]  N. Kleckner,et al.  Chromosome and Replisome Dynamics in E. coli: Loss of Sister Cohesion Triggers Global Chromosome Movement and Mediates Chromosome Segregation , 2005, Cell.

[33]  Zemer Gitai,et al.  The New Bacterial Cell Biology: Moving Parts and Subcellular Architecture , 2005, Cell.

[34]  G. Jagura-Burdzy,et al.  Bacterial chromosome segregation , 2005 .

[35]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[36]  D. Weitz,et al.  Elastic Behavior of Cross-Linked and Bundled Actin Networks , 2004, Science.

[37]  David J Sherratt,et al.  Bacterial Chromosome Dynamics , 2003, Science.

[38]  Stuart Austin,et al.  The segregation of the Escherichia coli origin and terminus of replication , 2002, Molecular microbiology.

[39]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[40]  H. Niki,et al.  Dynamic organization of chromosomal DNA in Escherichia coli. , 2000, Genes & development.

[41]  K. Struhl Fundamentally Different Logic of Gene Regulation in Eukaryotes and Prokaryotes , 1999, Cell.

[42]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[43]  A. Murray,et al.  Chromosome and Low Copy Plasmid Segregation in E. coli: Visual Evidence for Distinct Mechanisms , 1997, Cell.

[44]  G. Fredrickson The theory of polymer dynamics , 1996 .

[45]  E. Kellenberger,et al.  The bacterial nucleoid revisited. , 1994, Microbiological reviews.