A Robust method for constructing rotational invariant descriptors

Abstract Unlike most existing descriptors that only encode the spatial information of one neighborhood for each sampling point, this paper proposed two novel local descriptors which encodes more than one local feature for each sampling point. These two local descriptors are named as MIOP (Multi-neighborhood Intensity Order Pattern) and MIROP (Multi-neighborhood Intensity Relative Order Pattern), respectively. Thanks to the rotation invariant coordinate system, the proposed descriptors can achieve the rotation invariance without reference orientation estimation. In order to evaluate the performance of the proposed descriptors and other tested local descriptors (e.g., SIFT, LIOP, DAISY, HRI-CSLTP, MROGH), image matching experiments were carried out on three datasets which are Oxford dataset, additional image pairs with complex illumination changes, and image sequences with different noises, respectively. To further investigate the discriminative ability of the proposed descriptors, a simple object recognition experiment was conducted on three public datasets. The experimental results show that the proposed local descriptors exhibit better performance and robustness than other evaluated descriptors.

[1]  Zhanyi Hu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Rotationally Invariant Descript , 2011 .

[2]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Luc Van Gool,et al.  Affine/ Photometric Invariants for Planar Intensity Patterns , 1996, ECCV.

[5]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[6]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[7]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[9]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[10]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[11]  Hai Tao,et al.  A novel feature descriptor invariant to complex brightness changes , 2009, CVPR.

[12]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[13]  Richard Szeliski,et al.  Reconstructing Rome , 2010, Computer.

[14]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[15]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[16]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[17]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[18]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[19]  Kazunori Miyata,et al.  Multi-scale region perpendicular local binary pattern: an effective feature for interest region description , 2014, The Visual Computer.

[20]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Yong Ho Moon,et al.  An enhanced SURF algorithm based on new interest point detection procedure and fast computation technique , 2016, Journal of Real-Time Image Processing.

[22]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[23]  Chi-Ho Chan,et al.  Local Ordinal Contrast Pattern Histograms for Spatiotemporal, Lip-Based Speaker Authentication , 2012, IEEE Trans. Inf. Forensics Secur..

[24]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[25]  Gang Wang,et al.  Exploring Local and Overall Ordinal Information for Robust Feature Description , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Jan-Michael Frahm,et al.  Building Rome on a Cloudless Day , 2010, ECCV.

[27]  Lu Tian,et al.  OSRI: A Rotationally Invariant Binary Descriptor , 2014, IEEE Transactions on Image Processing.

[28]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[30]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[32]  Bin Fan,et al.  Local Intensity Order Pattern for feature description , 2011, 2011 International Conference on Computer Vision.

[33]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Andrew Zisserman,et al.  Learning Local Feature Descriptors Using Convex Optimisation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[36]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[37]  Raj Gupta,et al.  Robust order-based methods for feature description , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.