Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation

We investigate the dynamics and control of a nonlinear oscillator that is described mathematically by a Variable Order Differential Equation (VODE). The dynamic problem in question arises from the dynamical analysis of a variable viscoelasticity oscillator. The dynamics of the model and the behavior of the variable order differintegrals are shown in variable phase space for different parameters. Two different controllers are developed for the VODEs under study in order to track an arbitrary reference function. A generalization of the van der Pol equation using the VODE formulation is analyzed under the light of the methods introduced in this work.

[1]  Samir Ladaci,et al.  On Fractional Adaptive Control , 2006 .

[2]  Marcelo H. Kobayashi,et al.  On the viscous motion of a small particle in a rotating cylinder , 2002, Journal of Fluid Mechanics.

[3]  Carlos F.M. Coimbra,et al.  The variable viscoelasticity oscillator , 2005 .

[4]  Ivan G. Graham,et al.  The numerical solution of Fredholm integral equations of the second kind , 1981, Bulletin of the Australian Mathematical Society.

[5]  J. D. Trolinger,et al.  Experimental verification of fractional history effects on the viscous dynamics of small spherical particles , 2005 .

[6]  Dov Ingman,et al.  Application of Differential Operator with Servo-Order Function in Model of Viscoelastic Deformation Process , 2005 .

[7]  Shaher Momani,et al.  A numerical scheme for the solution of multi-order fractional differential equations , 2006, Appl. Math. Comput..

[8]  Zongxuan Sun,et al.  Control of linear systems with nonlinear disturbance dynamics , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[9]  James D. Trolinger,et al.  An experimental study on stationary history effects in high-frequency Stokes flows , 2004, Journal of Fluid Mechanics.

[10]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[11]  Robert L. Williams,et al.  Linear State-Space Control Systems , 2007 .

[12]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[13]  Carlos F.M. Coimbra,et al.  Mechanics with variable‐order differential operators , 2003 .

[14]  J.A.T. Machado,et al.  Dynamics of the fractional-order Van der Pol oscillator , 2004, Second IEEE International Conference on Computational Cybernetics, 2004. ICCC 2004..

[15]  Reyad El-Khazali,et al.  Stabilization of generalized fractional order chaotic systems using state feedback control , 2004 .

[16]  Dov Ingman,et al.  Constitutive Dynamic-Order Model for Nonlinear Contact Phenomena , 2000 .

[17]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[18]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[19]  I. Petráš Control of Fractional-Order Chua's System , 2000, nlin/0008029.

[20]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[21]  J. Calvet,et al.  Design of P and PI stabilizing controllers for quasi-linear systems , 1990 .

[22]  V. Anh,et al.  FRACTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY L , 2003 .

[23]  T. Hartley,et al.  Dynamics and Control of Initialized Fractional-Order Systems , 2002 .

[24]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[25]  Yaozhong Hu Integral Transformations and Anticipative Calculus for Fractional Brownian Motions , 2005 .

[26]  I. Podlubny Fractional differential equations , 1998 .

[27]  Stabilization of Feedback Linearized Nonlinear Processes under Bounded Perturbations , 1989, 1989 American Control Conference.

[28]  Chyi Hwang,et al.  A note on time-domain simulation of feedback fractional-order systems , 2002, IEEE Trans. Autom. Control..

[29]  B. Ross,et al.  Integration and differentiation to a variable fractional order , 1993 .

[30]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[31]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[32]  K. Balachandran,et al.  Local Controllability of Quasilinear Integrodifferential Evolution Systems in Banach Spaces , 2001 .

[33]  Carlos F.M. Coimbra,et al.  General solution of the particle momentum equation in unsteady Stokes flows , 1998 .

[34]  Bing-Gang Cao,et al.  Optimization of fractional order PID controllers based on genetic algorithms , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[35]  Johan Grasman,et al.  Relaxation Oscillations , 2009, Encyclopedia of Complexity and Systems Science.

[36]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[37]  Carlos F.M. Coimbra,et al.  A variable order constitutive relation for viscoelasticity , 2007 .

[38]  Weihua Deng,et al.  Remarks on fractional derivatives , 2007, Appl. Math. Comput..

[39]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[40]  Bertram Ross,et al.  Fractional integration operator of variable order in the holder spaces Hλ(x) , 1995 .

[41]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[42]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[43]  J. A. Tenreiro Machado,et al.  Analysis of the Van der Pol Oscillator Containing Derivatives of Fractional Order , 2007 .

[44]  Dov Ingman,et al.  Control of damping oscillations by fractional differential operator with time-dependent order , 2004 .