Atmospheric observations of Arctic Ocean methane emissions up to 82° north

Uncertainty in the future atmospheric burden of methane—a potent greenhouse gas—represents an important challenge to the development of realistic climate projections. Airborne observations of methane suggest that the remote Arctic Ocean could prove to be a potentially important methane source.

[1]  Rodrigo Jimenez,et al.  Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer , 2005, SPIE OPTO.

[2]  William J. Collins,et al.  Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review , 2010 .

[3]  S. Houweling,et al.  Large tundra methane burst during onset of freezing , 2008, Nature.

[4]  J. A. Silver,et al.  Vertical cavity laser hygrometer for the National Science Foundation Gulfstream‐V aircraft , 2010 .

[5]  Philip S. Anderson,et al.  Boundary layer physics over snow and ice , 2007 .

[6]  Philippe Ciais,et al.  Source attribution of the changes in atmospheric methane for 2006–2008 , 2010 .

[7]  M. Proffitt,et al.  Fast‐response dual‐beam UV‐absorption ozone photometer suitable for use on stratospheric balloons , 1983 .

[8]  S. Wofsy,et al.  HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  P. M. Lang,et al.  Observational constraints on recent increases in the atmospheric CH4 burden , 2009 .

[10]  Derek M. Cunnold,et al.  Renewed growth of atmospheric methane , 2008 .

[11]  Jens Greinert,et al.  Quantification of seep-related methane gas emissions at Tommeliten, North Sea. , 2011 .

[12]  I. Semiletov,et al.  Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf , 2010, Science.

[13]  Lars Kaleschke,et al.  Halogens and their role in polar boundary-layer ozone depletion , 2007 .

[14]  P. M. Lang,et al.  Atmospheric methane levels off: Temporary pause or a new steady‐state? , 2003 .

[15]  A. Stohl,et al.  Arctic methane sources: Isotopic evidence for atmospheric inputs , 2011 .

[16]  P. Brewer,et al.  Occurrence of methane in the near-surface waters of the western subtropical North-Atlantic , 1977 .

[17]  F. Chapin,et al.  Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming , 2006, Nature.

[18]  David M. Karl,et al.  Aerobic production of methane in the sea , 2008 .

[19]  E. Nöthig,et al.  Coexisting methane and oxygen excesses in nitrate-limited polar water (Fram Strait) during ongoing sea ice melting , 2011 .

[20]  Colm Sweeney,et al.  Tropospheric distribution and variability of N2O: Evidence for strong tropical emissions , 2011 .

[21]  D. Etheridge,et al.  Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability , 1998 .

[22]  R. Draxler HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website , 2010 .

[23]  V. Kitidis,et al.  Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean , 2010 .

[24]  U. Schauer,et al.  Methane production in aerobic oligotrophic surface water in the central Arctic Ocean , 2009 .