Two-Octave Supercontinuum Generation of High-Order OAM Modes in Air-Core As₂S₃ Ring Fiber

In this work, we design and simulate an air-core As<sub>2</sub>S<sub>3</sub> ring fiber for high-order orbital angular momentum (OAM) supercontinuum generation. We show that the chromatic dispersion of the ring fiber can be substantially tailored by proper optimization of the air-core radius. Two-octave supercontinuum carrying OAM<sub>17,1</sub> mode, spanning from 1560 to 6250 nm, is obtained by pumping a 50-fs 100-kW secant hyperbolic pulse centered at the wavelength of 3800 nm into the designed fiber with 50-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> air-core radius and 1-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> ring width. We further engineer the chromatic dispersion of some other OAM modes and perform simulations of supercontinuum spectra using different kilowatt-level peak power, which indicates that the fiber we design represents a promising avenue for supercontinuum generation of all the OAM<sub><italic>l</italic>,1</sub> modes (<inline-formula> <tex-math notation="LaTeX">$\vert l\vert \le 17$ </tex-math></inline-formula>). The proposed fiber is suitable for the transmission of OAM beams in infrared wavelength range and it could promote the development and application of high-order OAM beams.

[1]  Irving H. Malitson,et al.  Refractive Index of Arsenic Trisulfide , 1958 .

[2]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[3]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[4]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[5]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[6]  A. Vaziri,et al.  Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. , 2003, Physical review letters.

[7]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[8]  Tanya M Monro,et al.  A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. , 2009, Optics express.

[9]  Junichi Hamazaki,et al.  Optical-vortex laser ablation. , 2010, Optics express.

[10]  Alexander Hartung,et al.  Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. , 2011, Optics express.

[11]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[12]  A. E. Willner,et al.  Mode Properties and Propagation Effects of Optical Orbital Angular Momentum (OAM) Modes in a Ring Fiber , 2012, IEEE Photonics Journal.

[13]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[14]  Craig B. Arnold,et al.  Bessel and annular beams for materials processing , 2012 .

[15]  Robert Fickler,et al.  Quantum Entanglement of High Angular Momenta , 2012, Science.

[16]  A. Willner,et al.  Octave-spanning supercontinuum generation of vortices in a As2S3 ring photonic crystal fiber , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[17]  Jurgen Michel,et al.  Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared , 2014 .

[18]  S. Barnett,et al.  Detection of a Spinning Object Using Light’s Orbital Angular Momentum , 2013, Science.

[19]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[20]  Alan E. Willner,et al.  Broadband low chromatic dispersion and supercontinuum generation in a step-index fiber and an OAM-supporting vortex fiber with a submicron slot , 2013, 2013 IEEE Photonics Conference.

[21]  François Légaré,et al.  Multioctave infrared supercontinuum generation in large-core As₂S₃ fibers. , 2014, Optics letters.

[22]  A. Zeilinger,et al.  Communication with spatially modulated light through turbulent air across Vienna , 2014, 1402.2602.

[23]  Christos Markos,et al.  Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms , 2014, Scientific Reports.

[24]  A. Willner,et al.  High-capacity millimetre-wave communications with orbital angular momentum multiplexing , 2014, Nature Communications.

[25]  Trevor M. Benson,et al.  Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. , 2014, Optics express.

[26]  Trevor M. Benson,et al.  Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad , 2014 .

[27]  Benjamin J Eggleton,et al.  1.9 octave supercontinuum generation in a As₂S₃ step-index fiber driven by mid-IR OPCPA. , 2014, Optics letters.

[28]  Shuisheng Jian,et al.  Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber. , 2016, Optics letters.

[29]  Moshe Tur,et al.  Using a complex optical orbital-angular-momentum spectrum to measure object parameters. , 2017, Optics letters.

[30]  Ying Zhang,et al.  Edge-dip air core fiber for improvement of the transmission of higher-order OAM modes , 2018, Other Conferences.

[31]  Christos Markos,et al.  Multimaterial photonic crystal fibers , 2018, OPTO.

[32]  S Ramachandran,et al.  Octave-wide supercontinuum generation of light-carrying orbital angular momentum. , 2019, Optics express.

[33]  Bora Ung,et al.  Endlessly mono-radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams , 2019, Scientific Reports.

[34]  Yongxiong Ren,et al.  Air-Core Ring Fiber With >1000 Radially Fundamental OAM Modes Across O, E, S, C, and L Bands , 2020, IEEE Access.