Partial eigenstructure assignment for undamped vibration systems using acceleration and displacement feedback

Abstract A new method for partial eigenstructure assignment using acceleration and displacement feedback for undamped vibration systems is presented in this paper. Firstly, a necessary and sufficient condition is proposed for the incremental mass and stiffness matrices that modify some eigenpairs while keeping other eigenpairs unchanged. Secondly, based on this condition, an algorithm for determining the required control gain matrices of acceleration and displacement feedback, which assign the desired eigenstructure, is developed. This algorithm is easy to implement, and works directly on the second-order system model. More importantly, the algorithm allows the control matrix to be specified beforehand and also leads naturally to a small norm solution of the feedback gain matrices. Finally, some numerical examples are given to demonstrate the effectiveness and accuracy of the proposed algorithm.

[1]  Jaroslav Kautsky,et al.  Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case , 2001, SIAM J. Matrix Anal. Appl..

[2]  Gene H. Golub,et al.  Matrix computations , 1983 .

[3]  N. Nichols,et al.  Eigenstructure assignment in descriptor systems , 1986 .

[4]  John E. Mottershead,et al.  Robust pole placement in structures by the method of receptances , 2011 .

[5]  Sylvan Elhay,et al.  POLE ASSIGNMENT IN VIBRATORY SYSTEMS BY MULTI-INPUT CONTROL , 2000 .

[6]  John E. Mottershead,et al.  Active vibration suppression by pole-zero placement using measured receptances , 2008 .

[7]  Hamid Bahai,et al.  An inverse strategy for relocation of eigenfrequencies in structural design. Part II: second order approximate solutions , 2004 .

[8]  Dario Richiedei,et al.  Eigenstructure assignment in undamped vibrating systems: A convex-constrained modification method based on receptances , 2012 .

[9]  James Lam,et al.  Robust eigenvalue assignment in second-order systems: A gradient flow approach , 1997 .

[10]  Biswa Nath Datta,et al.  An optimization approach for minimum norm and robust partial quadratic eigenvalue assignment problems for vibrating structures , 2009 .

[11]  Jiang Qian,et al.  Orthogonal basis selection method for robust partial eigenvalue assignment problem in second-order control systems , 2008 .

[12]  Jer-Nan Juang,et al.  ROBUST EIGENSYSTEM ASSIGNMENT FOR STATE ESTIMATORS USING SECOND-ORDER MODELS , 1992 .

[13]  B. Datta,et al.  ORTHOGONALITY AND PARTIAL POLE ASSIGNMENT FOR THE SYMMETRIC DEFINITE QUADRATIC PENCIL , 1997 .

[14]  Dario Richiedei,et al.  Discrete mass and stiffness modifications for the inverse eigenstructure assignment in vibrating systems: Theory and experimental validation , 2012 .

[15]  Biswa Nath Datta,et al.  Robust and minimum norm partial quadratic eigenvalue assignment in vibrating systems: A new optimization approach , 2010 .

[16]  Guang-Ren Duan,et al.  Parametric eigenstructure assignment in second-order descriptor linear systems , 2004, IEEE Transactions on Automatic Control.

[17]  Daniel J. Inman,et al.  Eigenstructure assignment and controller optimization for mechanical systems , 1994, IEEE Trans. Control. Syst. Technol..

[18]  Daniel C. Kammer,et al.  Improved Eigenstructure Assignment Controller Design Using a Substructure-Based Coordinate System , 1997 .

[19]  John E. Mottershead,et al.  Assignment of natural frequencies by an added mass and one or more springs , 2004 .

[20]  Huajiang Ouyang,et al.  Pole assignment of friction-induced vibration for stabilisation through state-feedback control , 2010 .

[21]  Biswa Nath Datta,et al.  Numerically robust pole assignment for second-order systems , 1996 .

[22]  John E. Mottershead,et al.  Receptance Method in Active Vibration Control , 2006 .

[23]  Wen-Wei Lin,et al.  On Inverse Quadratic Eigenvalue Problems with Partially Prescribed Eigenstructure , 2004, SIAM J. Matrix Anal. Appl..

[24]  Jiang Qian,et al.  Robust partial pole assignment problem for high order control systems , 2012, Autom..

[25]  Huajiang Ouyang,et al.  Receptance-based partial pole assignment for asymmetric systems using state-feedback , 2012 .

[26]  Guang-Ren Duan,et al.  Complete parametric approach for eigenstructure assignment in a class of second-order linear systems , 1999, Autom..

[27]  A. Kress,et al.  Eigenstructure assignment using inverse eigenvalue methods , 1995 .

[28]  Mohamed A. Ramadan,et al.  Partial eigenvalue assignment problem of high order control systems using orthogonality relations , 2010, Comput. Math. Appl..

[29]  Wen-Wei Lin,et al.  Robust Partial Pole Assignment for Vibrating Systems With Aerodynamic Effects , 2006, IEEE Transactions on Automatic Control.

[30]  John E. Mottershead,et al.  Structural modification. Part 2: assignment of natural frequencies and antiresonances by an added beam , 2005 .

[31]  Jiang Qian,et al.  Robust partial eigenvalue assignment problem for the second-order system , 2005 .

[32]  Eric K-W Chu POLE ASSIGNMENT FOR SECOND-ORDER SYSTEMS , 2002 .

[33]  Biswa Nath Datta,et al.  PARTIAL EIGENSTRUCTURE ASSIGNMENT FOR THE QUADRATIC PENCIL , 2000 .