An Integrated Geologic Map of the Rembrandt Basin, on Mercury, as a Starting Point for Stratigraphic Analysis

Planetary geologic maps are usually carried out following a morpho‐stratigraphic approach where morphology is the dominant character guiding the remote sensing image interpretation. On the other hand, on Earth a more comprehensive stratigraphic approach is preferred, using lithology, overlapping relationship, genetic source, and ages as the main discriminants among the different geologic units. In this work we produced two different geologic maps of the Rembrandt basin of Mercury, following the morpho‐stratigraphic methods and symbology adopted by many authors while mapping quadrangles on Mercury, and an integrated geo‐stratigraphic approach, where geologic units were distinguished also on the basis of their false colors (derived by multispectral image data of the NASA MESSENGER mission), subsurface stratigraphic position (inferred by crater excavation) and model ages. We distinguished two different resurfacing events within the Rembrandt basin, after the impact event, and four other smooth plains units outside the basin itself. This provided the basis to estimate thicknesses, volumes, and ages of the smooth plains inside the basin. Results from thickness estimates obtained using different methodologies confirm the presence of two distinct volcanic events inside the Rembrandt basin, with a total thickness ranging between 1–1.5 km. Furthermore, model ages suggest that the volcanic infilling of the Rembrandt basin is among the ones that extended well into the mid‐Calorian period, when Mercury’s effusive volcanism was previously thought to be largely over.

[1]  L. Nittler,et al.  Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material , 2015 .

[2]  J. Dohm,et al.  Structural control of scarps in the Rembrandt region of Mercury , 2012 .

[3]  Don E. Wilhelms,et al.  Mercurian volcanism questioned , 1976 .

[4]  J. Oberst,et al.  Geologic evolution and cratering history of Mercury , 2001 .

[5]  G. Neumann,et al.  FIRST GLOBAL DIGITAL ELEVATION MODEL OF MERCURY , 2016 .

[6]  A. Hegde,et al.  Evaluation of pan-sharpening methods for spatial and spectral quality , 2017 .

[7]  J. Head,et al.  Rembrandt impact basin: Distinguishing between volcanic and impact-produced plains on Mercury , 2015 .

[8]  M. Massironi,et al.  High-Relief Ridge , 2014 .

[9]  S. Debei,et al.  SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission , 2020, Space Science Reviews.

[10]  J. Oberst,et al.  Fault‐bound valley associated with the Rembrandt basin on Mercury , 2016 .

[11]  Mark S. Robinson,et al.  The Evolution of Mercury’s Crust: A Global Perspective from MESSENGER , 2009, Science.

[12]  D. Rothery,et al.  Late movement of basin-edge lobate scarps on Mercury , 2017 .

[13]  Valentina Galluzzi,et al.  Multi-mapper Projects: Collaborative Mercury Mapping , 2019, Lecture Notes in Geoinformation and Cartography.

[14]  H. J. Melosh,et al.  The tectonics of Mercury , 1988 .

[15]  Clark R. Chapman,et al.  Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history , 2011 .

[16]  C. Chapman,et al.  A morphological evaluation of crater degradation on Mercury: Revisiting crater classification with MESSENGER data , 2016, Icarus.

[17]  Oscar S. Adams,et al.  Elements of Map Projection: with Applications to Map and Chart Construction , 1922 .

[18]  D. Rothery,et al.  Geology of the Hokusai quadrangle (H05), Mercury , 2019, Journal of Maps.

[19]  Robert G. Strom,et al.  Tectonism and volcanism on Mercury , 1975 .

[20]  S. L. André,et al.  Emplacement and tectonic deformation of smooth plains in the Caloris basin, Mercury , 2009 .

[21]  O. Namur,et al.  Silicate mineralogy at the surface of Mercury , 2017 .

[22]  Walter S. Kiefer,et al.  The Formation of Mercury's Smooth Plains , 1987 .

[23]  G. Cremonese,et al.  A NEW CHRONOLOGY FOR THE MOON AND MERCURY , 2008, 0903.5137.

[24]  M. Wieczorek,et al.  Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System , 2011 .

[25]  Waldo R. Tobler,et al.  Experiments In Migration Mapping By Computer , 1987 .

[26]  J. University,et al.  The effects of the target material properties and layering on the crater chronology: The case of Raditladi and Rachmaninoff basins on Mercury , 2011, 1105.5272.

[27]  L. Nittler,et al.  Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements , 2015 .

[28]  F. Capaccioni,et al.  Global Spectral Properties and Lithology of Mercury: The Example of the Shakespeare (H‐03) Quadrangle , 2019, Journal of Geophysical Research: Planets.

[29]  S. V. Gasselt,et al.  Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS , 2011 .

[30]  Arnold C. Mason,et al.  Photogeologic Study of the Moon , 1962 .

[31]  J. Head,et al.  Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga , 2016 .

[32]  H. J. Melosh,et al.  Mercurian global tectonics - A consequence of tidal despinning , 1978 .

[33]  C. Johnson,et al.  Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging , 2016 .

[34]  A. M. Celâl Şengör,et al.  Mercury’s global contraction much greater than earlier estimates , 2014 .

[35]  S. Murchie,et al.  Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy , 2010 .

[36]  S. Murchie,et al.  Spectroscopic Observations of Mercury's Surface Reflectance During MESSENGER's First Mercury Flyby , 2008, Science.

[37]  C. Parente,et al.  Influence of the weights in IHS and Brovey methods for pan-sharpening WorldView-3 satellite images , 2017 .

[38]  Erick R. Malaret,et al.  The Mercury Dual Imaging System on the MESSENGER Spacecraft , 2007 .

[39]  N. Barlow,et al.  Revised constraints on absolute age limits for Mercury's Kuiperian and Mansurian stratigraphic systems , 2017 .

[40]  Paul G. Lucey,et al.  Spectral effects of space weathering on Mercury: The role of composition and environment , 2012 .

[41]  D. Rothery,et al.  Lateral ramps and strike-slip kinematics on Mercury , 2014 .

[42]  Paul G. Lucey,et al.  The optical effects of small iron particles that darken but do not redden: Evidence of intense space weathering on Mercury , 2011 .

[43]  S. Murchie,et al.  The distribution and origin of smooth plains on Mercury , 2013 .

[44]  G. Neukum,et al.  The cratering record on Mercury and the origin of impacting objects , 1988 .

[45]  Daniel Dzurisin,et al.  The tectonic and volcanic history of mercury as inferred from studies of scarps, ridges, troughs, and other lineaments , 1978 .

[46]  Mark S. Robinson,et al.  Thrust faults and the global contraction of Mercury , 2004 .

[47]  G. Cremonese,et al.  Age relationships of the Rembrandt basin and Enterprise Rupes, Mercury , 2014 .

[48]  P. Palumbo,et al.  Geology of the Victoria quadrangle (H02), Mercury , 2016 .

[49]  Bruce C. Murray,et al.  The Mariner 10 pictures of Mercury: An overview , 1975 .

[50]  Mark S. Robinson,et al.  Calibration, Projection, and Final Image Products of MESSENGER’s Mercury Dual Imaging System , 2018 .

[51]  G. Neukum,et al.  Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty , 2010 .

[52]  C. Klimczak,et al.  Tectonic patterns of shortening landforms in Mercury's northern smooth plains , 2019, Icarus.

[53]  Richard J. Pike,et al.  Geomorphology of impact craters on Mercury , 1988 .

[54]  Richard A. Schultz,et al.  Localization of bedding plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure , 2000 .

[55]  Valentina Galluzzi,et al.  Geology of the Shakespeare quadrangle (H03), Mercury , 2017 .

[56]  Newell J. Trask,et al.  Preliminary geologic terrain map of Mercury , 1975 .

[57]  S. Solomon,et al.  A rock-mechanical assessment of Mercury's global tectonic fabric , 2015 .

[58]  H. Hargitai Planetary Cartography and GIS , 2019, Lecture Notes in Geoinformation and Cartography.

[59]  David E. Smith,et al.  The Morphology of Craters on Mercury: Results from MESSENGER Flybys , 2012 .

[60]  S. L. André,et al.  The tectonics of Mercury: The view after MESSENGER's first flyby , 2009 .

[61]  J. Head,et al.  The First Global Geological Map of Mercury , 2015 .

[62]  S. Murchie,et al.  Stratigraphy of the Caloris Basin, Mercury: Implications for Volcanic History and Basin Impact Melt , 2015 .

[63]  G. Cremonese,et al.  Mercury's geochronology revised by applying Model Production Function to Mariner 10 data: Geological implications , 2009, 0910.1399.

[64]  Paolo Mancinelli,et al.  Geology of the Raditladi quadrangle, Mercury (H04) , 2016 .

[65]  Eugene M. Shoemaker,et al.  STRATIGRAPHIC BASIS FOR A LUNAR TIME SCALE , 1962 .

[66]  J. Head,et al.  Basin formation on Mercury: Caloris and the origin of its low-reflectance material , 2017 .

[67]  S. Croft Scaling of Complex Craters , 1985 .

[68]  Paul D. Spudis,et al.  Stratigraphy and geologic history of Mercury , 1988 .

[69]  M. Massironi,et al.  Dating long thrust systems on Mercury: New clues on the thermal evolution of the planet , 2016, Geoscience Frontiers.

[70]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[71]  L. Nittler,et al.  Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER's X-Ray Spectrometer , 2015 .

[72]  J. Head,et al.  Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations , 2015 .

[73]  R. Phillips,et al.  Internal and tectonic evolution of Mercury , 2003 .

[74]  T. Watters Wrinkle ridge assemblages on the terrestrial planets , 1988 .