Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment.

Computer simulations of biological electron transfer reactions are reviewed with a focus on the calculation of reaction free energy (driving force) and reorganization free energy. Then a mixed quantum mechanical/molecular mechanical (QM/MM) approach is described which is designed for computation of these quantities for pure electron transfer reactions with large donor-acceptor separation distances. The method is applied to intra-protein electron transfer in Ru(bpy)(2)(im)His33 cytochrome c and the results compared to experimental data. Several modeling aspects which are important for successful calculation of free energies with QM/MM are discussed in detail.

[1]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[2]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[3]  H. Mcconnell,et al.  Intramolecular Charge Transfer in Aromatic Free Radicals , 1961 .

[4]  Rudolph A. Marcus,et al.  On the Theory of Electron-Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions , 1965 .

[5]  J J Hopfield,et al.  Electron transfer between biological molecules by thermally activated tunneling. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[6]  B. Brunschwig,et al.  Configuration changes in electron-exchange reactions of metal complexes , 1982 .

[7]  Arieh Warshel,et al.  Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions , 1982 .

[8]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[9]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[10]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[11]  R. Marcus,et al.  Dielectric relaxation and intramolecular electron transfers , 1986 .

[12]  J J Wendoloski,et al.  Molecular dynamics of a cytochrome c-cytochrome b5 electron transfer complex. , 1987, Science.

[13]  John J. Hopfield,et al.  Electron tunneling through covalent and noncovalent pathways in proteins , 1987 .

[14]  R. A. Kuharski,et al.  Molecular model for aqueous ferrous–ferric electron transfer , 1988 .

[15]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[16]  R. Goldstein,et al.  Energetics of initial charge separation in bacterial photosynthesis: The triplet decay rate in very high magnetic fields , 1988 .

[17]  G. Fleming,et al.  Rates of primary electron transfer in photosynthetic reaction centres and their mechanistic implications , 1988, Nature.

[18]  A. Warshel,et al.  Dispersed polaron simulations of electron transfer in photosynthetic reaction centers. , 1989, Science.

[19]  H. Gray,et al.  Driving-force effects on the rate of long-range electron transfer in ruthenium-modified cytochrome c , 1989 .

[20]  D. Dixon,et al.  Electrostatic, Steric, and Reorganizational Control of Electron Self-Exchange in Cytochromes , 1989 .

[21]  Arieh Warshel,et al.  Investigation of the free energy functions for electron transfer reactions , 1990 .

[22]  A. Mauk,et al.  Electron-transfer self-exchange kinetics of cytochrome b5 , 1990 .

[23]  R. A. Kuharski,et al.  Role of nuclear tunneling in aqueous ferrous–ferric electron transfer , 1990 .

[24]  M. Natan,et al.  Temperature-independent electron transfer in mixed-metal hemoglobin hybrids , 1991 .

[25]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[26]  J. Andrew McCammon,et al.  Quantum simulations of conformation reorganization in the electron transfer reactions of tuna cytochrome c , 1991 .

[27]  Kurt Warncke,et al.  Nature of biological electron transfer , 1992, Nature.

[28]  S. H. Northrup,et al.  Simulation of electron-transfer self-exchange in cytochromes c and b5 , 1993 .

[29]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[30]  D. Chandler,et al.  Diabatic surfaces and the pathway for primary electron transfer in a photosynthetic reaction center , 1993 .

[31]  R. Marcus,et al.  Quantum correction for electron transfer rates. Comparison of polarizable versus nonpolarizable descriptions of solvent , 1993 .

[32]  Chung F. Wong,et al.  Cytochrome c: A Molecular Proving Ground for Computer Simulations , 1993 .

[33]  R. Marcus Theory of electron transfer reactions , 1994 .

[34]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[35]  P. Kollman,et al.  Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide , 1995 .

[36]  S. Terrettaz,et al.  Kinetic Parameters for Cytochrome c via Insulated Electrode Voltammetry , 1996 .

[37]  H. Gray,et al.  RATES OF HEME OXIDATION AND REDUCTION IN RU(HIS33)CYTOCHROME C AT VERY HIGH DRIVING FORCES , 1996 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Michele Parrinello,et al.  Equilibrium Geometries and Electronic Structure of Iron−Porphyrin Complexes: A Density Functional Study , 1997 .

[40]  Joel S. Bader,et al.  Solvation and reorganization energies in polarizable molecular and continuum solvents , 1997 .

[41]  Arieh Warshel,et al.  The Reorganization Energy of Cytochrome c Revisited , 1997 .

[42]  P. Dutton,et al.  Biological electron tunneling through native protein media , 1997, JBIC Journal of Biological Inorganic Chemistry.

[43]  A. Winkler,et al.  Reorganization Energy of Blue Copper: Effects of Temperature and Driving Force on the Rates of Electron Transfer in Ruthenium- and Osmium-Modified Azurins , 1997 .

[44]  J. Deisenhofer,et al.  Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria , 1997 .

[45]  Weitao Yang,et al.  A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons , 1998 .

[46]  K. Sharp,et al.  Calculation of electron transfer reorganization energies using the finite difference Poisson-Boltzmann model. , 1998, Biophysical journal.

[47]  August W. Calhoun,et al.  ISOTOPE EFFECTS IN ELECTRON TRANSFER ACROSS THE ELECTRODE-ELECTROLYTE INTERFACE : A MEASURE OF SOLVENT MODE QUANTIZATION , 1998 .

[48]  J. Mendes,et al.  Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations. , 1998, Biophysical journal.

[49]  A. Warshel,et al.  Reorganization energy of the initial electron-transfer step in photosynthetic bacterial reaction centers. , 1998, Biophysical journal.

[50]  Jeremy J. Ramsden,et al.  BUFFER DEPENDENCE OF REFRACTIVE INDEX INCREMENTS OF PROTEIN SOLUTIONS , 1998 .

[51]  Z. Huang,et al.  Effects of Some Charged Amino Acid Mutations on the Electron Self-Exchange Kinetics of Cytochrome b5 , 1999 .

[52]  Michele Parrinello,et al.  The Iron−Sulfur Bond in Cytochrome c , 1999 .

[53]  G. Voth,et al.  Classical and Quantum Simulation of Electron Transfer Through a Polypeptide , 1999 .

[54]  K. Rosso,et al.  Ab Initio Calculation of Homogeneous Outer Sphere Electron Transfer Rates: Application to M(OH2)63+/2+Redox Couples , 2000 .

[55]  Ulf Ryde,et al.  A comparison of the inner-sphere reorganization energies of cytochromes, iron-sulphur clusters, and blue copper proteins , 2001 .

[56]  Koji Ando,et al.  A stable fluctuating-charge polarizable model for molecular dynamics simulations: Application to aqueous electron transfers , 2001 .

[57]  K. Ando Solvent nuclear quantum effects in electron transfer reactions. III. Metal ions in water. Solute size and ligand effects , 2001 .

[58]  A. Warshel,et al.  Dynamics of biochemical and biophysical reactions: insight from computer simulations , 2001, Quarterly Reviews of Biophysics.

[59]  S. Scheiner,et al.  Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn , 2002 .

[60]  S. Scheiner,et al.  Relativistic effects in iron-, ruthenium-, and osmium porphyrins , 2002 .

[61]  Alessandro Laio,et al.  A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations , 2002 .

[62]  Alessandro Laio,et al.  D-RESP: Dynamically Generated Electrostatic Potential Derived Charges from Quantum Mechanics/Molecular Mechanics Simulations , 2002 .

[63]  Thomas Simonson,et al.  Gaussian fluctuations and linear response in an electron transfer protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  F. Rotzinger The self-exchange of a nonbonding electron via the outer-sphere pathway: reorganizational energy and electronic coupling matrix element for the V(OH2)62+/3+, Ru(OH2)62+/3+, V(OH2)63+/4+, and Ru(OH2)63+/4+ couples , 2002 .

[65]  Kosuke Izutsu Electrochemistry in Nonaqueous Solutions , 2002 .

[66]  Mikael P. Johansson,et al.  Change in electron and spin density upon electron transfer to haem. , 2002, Biochimica et biophysica acta.

[67]  D. Scherlis,et al.  Structure and spin-state energetics of an iron porphyrin model: An assessment of theoretical methods , 2002 .

[68]  Mikael P. Johansson,et al.  The spin distribution in low-spin iron porphyrins. , 2002, Journal of the American Chemical Society.

[69]  Michel Dupuis,et al.  Characterization of electronic structure and properties of a Bis(histidine) heme model complex. , 2003, Journal of the American Chemical Society.

[70]  Qiang Cui,et al.  Free energy perturbation calculations with combined QM/MM potentials complications, simplifications, and applications to redox potential calculations , 2003 .

[71]  Arieh Warshel,et al.  Frozen density functional free energy simulations of redox proteins: computational studies of the reduction potential of plastocyanin and rusticyanin. , 2003, Journal of the American Chemical Society.

[72]  M. Marchi,et al.  Simulation and modeling of the Rhodobacter sphaeroides bacterial reaction center II: Primary charge separation , 2003 .

[73]  Junjun Mao,et al.  How cytochromes with different folds control heme redox potentials. , 2003, Biochemistry.

[74]  Harry B Gray,et al.  Electron tunneling through proteins , 2003, Quarterly Reviews of Biophysics.

[75]  M. Marchi,et al.  Linear response and electron transfer in complex biomolecular systems and a reaction center protein , 2003 .

[76]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[77]  I. Tavernelli,et al.  Electronic structure and solvation of copper and silver ions: a theoretical picture of a model aqueous redox reaction. , 2004, Journal of the American Chemical Society.

[78]  A. Warshel,et al.  A density-matrix model of photosynthetic electron transfer with microscopically estimated vibrational relaxation times , 2004 .

[79]  Arieh Warshel,et al.  Dependence of Photosynthetic Electron-Transfer Kinetics on Temperature and Energy in a Density-Matrix Model† , 2004 .

[80]  H. Gray,et al.  Inner-sphere electron-transfer reorganization energies of zinc porphyrins. , 2004, Journal of the American Chemical Society.

[81]  G. Mclendon,et al.  Mapping the electron transfer interface between cytochrome b5 and cytochrome c. , 2004, Biochemistry.

[82]  Vikas Nanda,et al.  De novo design of a redox-active minimal rubredoxin mimic. , 2005, Journal of the American Chemical Society.

[83]  T. Voorhis,et al.  Direct optimization method to study constrained systems within density-functional theory , 2005 .

[84]  Wei Wang,et al.  Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. , 2005, Journal of the American Chemical Society.

[85]  Alexandre M J J Bonvin,et al.  The orientations of cytochrome c in the highly dynamic complex with cytochrome b5 visualized by NMR and docking using HADDOCK , 2005, Protein science : a publication of the Protein Society.

[86]  L. Waskell,et al.  Characterization and calculation of a cytochrome c-cytochrome b5 complex using NMR data. , 2005, Biochemistry.

[87]  P. Dutton,et al.  Amphiphilic four-helix bundle peptides designed for light-induced electron transfer across a soft interface. , 2005, Nano letters.

[88]  I. Tavernelli,et al.  Density-functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes. , 2005, The Journal of chemical physics.

[89]  M. Klein,et al.  Reorganization free energies for long-range electron transfer in a porphyrin-binding four-helix bundle protein. , 2006, Journal of the American Chemical Society.

[90]  M. Sprik,et al.  Ligand Field Effects on the Aqueous Ru(III)/Ru(II) Redox Couple from an All-Atom Density Functional Theory Perspective. , 2006, Journal of chemical theory and computation.

[91]  P. Dutton,et al.  Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[92]  Ronald L Koder,et al.  Intelligent design: the de novo engineering of proteins with specified functions. , 2006, Dalton transactions.

[93]  Jun Ge,et al.  Can the semiempirical PM3 scheme describe iron‐containing bioinorganic molecules? , 2006, J. Comput. Chem..

[94]  Qin Wu,et al.  Direct calculation of electron transfer parameters through constrained density functional theory. , 2006, The journal of physical chemistry. A.

[95]  T. Van Voorhis,et al.  Extracting electron transfer coupling elements from constrained density functional theory. , 2006, The Journal of chemical physics.

[96]  M. Elstner The SCC-DFTB method and its application to biological systems , 2006 .

[97]  J. VandeVondele,et al.  Density functional theory study of tetrathiafulvalene and thianthrene in acetonitrile: structure, dynamics, and redox properties. , 2006, The journal of physical chemistry. B.

[98]  M. Cascella,et al.  Role of protein frame and solvent for the redox properties of azurin from Pseudomonas aeruginosa , 2006, Proceedings of the National Academy of Sciences.

[99]  Troy Van Voorhis,et al.  Constrained Density Functional Theory and Its Application in Long-Range Electron Transfer. , 2006 .

[100]  N. Marzari,et al.  Realistic quantitative descriptions of electron transfer reactions: diabatic free-energy surfaces from first-principles molecular dynamics. , 2006, Physical review letters.

[101]  Michiel Sprik,et al.  Diabatic free energy curves and coordination fluctuations for the aqueous Ag+Ag2+ redox couple: a biased Born-Oppenheimer molecular dynamics investigation. , 2006, The Journal of chemical physics.

[102]  Weitao Yang,et al.  Development of exchange-correlation functionals with minimal many-electron self-interaction error. , 2007, The Journal of chemical physics.

[103]  David N Beratan,et al.  Coupling Coherence Distinguishes Structure Sensitivity in Protein Electron Transfer , 2007, Science.

[104]  Weitao Yang,et al.  Assessment and formal properties of exchange-correlation functionals constructed from the adiabatic connection. , 2007, The Journal of chemical physics.

[105]  B. Cherayil,et al.  Modulation of electron transfer kinetics by protein conformational fluctuations during early-stage photosynthesis. , 2007, The Journal of chemical physics.

[106]  Qin Wu,et al.  Configuration interaction based on constrained density functional theory: a multireference method. , 2007, The Journal of chemical physics.

[107]  I. Tavernelli Self-interaction corrected density functional theory for the study of intramolecular electron transfer dynamics in radical carbocations. , 2007, The journal of physical chemistry. A.

[108]  C. Cramer,et al.  Computational Electrochemistry: The Aqueous Ru3+|Ru2+ Reduction Potential , 2007 .

[109]  P. Dutton,et al.  Synthetic hydrogenases: incorporation of an iron carbonyl thiolate into a designed peptide. , 2007, Journal of the American Chemical Society.

[110]  Su Lin,et al.  Protein Dynamics Control the Kinetics of Initial Electron Transfer in Photosynthesis , 2007, Science.

[111]  Ab initio molecular dynamics of heme in cytochrome c. , 2007, The journal of physical chemistry. B.

[112]  R. Borrelli,et al.  Quantum Dynamics of Electron Transfer from Bacteriochlorophyll to Pheophytin in Bacterial Reaction Centers. , 2007, Journal of chemical theory and computation.

[113]  Joost VandeVondele,et al.  Calculation of redox properties: understanding short- and long-range effects in rubredoxin. , 2007, The journal of physical chemistry. B.

[114]  Michele Parrinello,et al.  Energy Conservation in Adaptive Hybrid Atomistic/Coarse-Grain Molecular Dynamics. , 2007, Journal of chemical theory and computation.

[115]  A. Stuchebrukhov,et al.  Protein dynamics control of electron transfer in photosynthetic reaction centers from Rps. sulfoviridis. , 2008, The journal of physical chemistry. B.

[116]  Weitao Yang,et al.  Ab initio quantum mechanical/molecular mechanical simulation of electron transfer process: fractional electron approach. , 2008, The Journal of chemical physics.