Combining Standardized Time Series Area and Cramér-von Mises Variance Estimators

We propose three related estimators for the variance parameter arising from a steady-state simulation process. All are based on combinations of standardized-time-series area and Cramer-von Mises (CvM) estimators. The first is a straightforward linear combination of the area and CvM estimators; the second resembles a Durbin-Watson statistic; and the third is related to a jackknifed version of the first. The main derivations yield analytical expressions for the bias and variance of the new estimators. These results show that the new estimators often perform better than the pure area, pure CvM, and benchmark nonoverlapping and overlapping batch means estimators, especially in terms of variance and mean squared error. We also give exact and Monte Carlo examples illustrating our findings.© 2007 Wiley Periodicals, Inc. Naval Research Logistics 54: 384-396, 2007

[1]  David Goldsman,et al.  Properties of Batched Quadratic-Form Variance Parameter Estimators for Simulations , 2001, INFORMS J. Comput..

[2]  Halim Damerdji,et al.  Mean-Square Consistency of the Variance Estimator in Steady-State Simulation Output Analysis , 1995, Oper. Res..

[3]  James R. Wilson,et al.  Exact expected values of variance estimators for simulation , 2007 .

[4]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[5]  L. Schruben,et al.  Properties of standardized time series weighted area variance estimators , 1990 .

[6]  B. Schmeiser,et al.  Optimal mean-squared-error batch sizes , 1995 .

[7]  Keebom Kang,et al.  Cramér-von Mises variance estimators for simulations , 1991, WSC '91.

[8]  David Goldsman,et al.  Large-Sample Results for Batch Means , 1997 .

[9]  C. Read,et al.  Handbook of the Normal Distribution, 2nd Edition. , 1998 .

[10]  Lee W. Schruben,et al.  Note-New Confidence Interval Estimators Using Standardized Time Series , 1990 .

[11]  Natalie M. Steiger,et al.  Output analysis: ASAP2: an improved batch means procedure for simulation output analysis , 2002, WSC '02.

[12]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[13]  Bruce W. Schmeiser,et al.  Batch Size Effects in the Analysis of Simulation Output , 1982, Oper. Res..

[14]  Bruce W. Schmeiser,et al.  Overlapping batch means: something for nothing? , 1984, WSC '84.

[15]  A. F. Seila,et al.  Cramer-von Mises variance estimators for simulations , 1991, 1991 Winter Simulation Conference Proceedings..

[16]  J. Durbin Distribution theory for tests based on the sample distribution function , 1973 .

[17]  G. S. Watson,et al.  Goodness-of-fit tests on a circle. II , 1961 .

[18]  James R. Wilson,et al.  Overlapping Variance Estimators for Simulation , 2007, Oper. Res..

[19]  Ward Whitt,et al.  Estimating the asymptotic variance with batch means , 1991, Oper. Res. Lett..

[20]  Donald L. Iglehart,et al.  Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..