Existence of a microRNA pathway in anucleate platelets

[1]  C. Ts'ao Rough endoplasmic reticulum and ribosomes in blood platelets. , 2009, Scandinavian journal of haematology.

[2]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[3]  Monika Belickova,et al.  Differential expression of microRNAs in hematopoietic cell lineages , 2008, European journal of haematology.

[4]  J. Prchal,et al.  Aberrant expression of microRNA in polycythemia vera , 2008, Haematologica.

[5]  Louis Flamand,et al.  Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element† , 2008, Nucleic acids research.

[6]  Zhenyu Xuan,et al.  A biochemical approach to identifying microRNA targets , 2007, Proceedings of the National Academy of Sciences.

[7]  George Easow,et al.  Isolation of microRNA targets by miRNP immunopurification. , 2007, RNA.

[8]  Stefan L Ameres,et al.  Molecular Basis for Target RNA Recognition and Cleavage by Human RISC , 2007, Cell.

[9]  J. Lötvall,et al.  Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells , 2007, Nature Cell Biology.

[10]  G. Meister,et al.  Identification of Human microRNA Targets From Isolated Argonaute Protein Complexes , 2007, RNA biology.

[11]  Gurman Singh Pall,et al.  Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot , 2007, Nucleic acids research.

[12]  S. Kunapuli,et al.  Nucleotide receptor signaling in platelets , 2006, Journal of thrombosis and haemostasis : JTH.

[13]  Nigel Mackman,et al.  Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenecity of human platelets , 2006, The Journal of experimental medicine.

[14]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[15]  É. Khandjian,et al.  Dicer-Derived MicroRNAs Are Utilized by the Fragile X Mental Retardation Protein for Assembly on Target RNAs , 2006, Journal of biomedicine & biotechnology.

[16]  P. Provost,et al.  MicroRNAs in Gene Regulation: When the Smallest Governs It All , 2006, Journal of biomedicine & biotechnology.

[17]  Juan Miranda Ríos [The big world of the small RNAs]. , 2006, Revista latinoamericana de microbiologia.

[18]  T. Dandekar,et al.  Analysis of SAGE data in human platelets: Features of the transcriptome in an anucleate cell , 2006, Thrombosis and Haemostasis.

[19]  A. Sacchetti,et al.  De Novo Synthesis of Cyclooxygenase-1 Counteracts the Suppression of Platelet Thromboxane Biosynthesis by Aspirin , 2006, Circulation research.

[20]  Phillip D. Zamore,et al.  Ribo-gnome: The Big World of Small RNAs , 2005, Science.

[21]  K. Swoboda,et al.  Escaping the Nuclear Confines: Signal-Dependent Pre-mRNA Splicing in Anucleate Platelets , 2005, Cell.

[22]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[23]  P. Bugert,et al.  Optimized procedure for platelet RNA profiling from blood samples with limited platelet numbers. , 2005, Clinical chemistry.

[24]  V. Kim MicroRNA biogenesis: coordinated cropping and dicing , 2005, Nature Reviews Molecular Cell Biology.

[25]  Ji-Joon Song,et al.  Purified Argonaute2 and an siRNA form recombinant human RISC , 2005, Nature Structural &Molecular Biology.

[26]  T. Rana,et al.  Specific and potent RNAi in the nucleus of human cells , 2005, Nature Structural &Molecular Biology.

[27]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[28]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[29]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[30]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[31]  Eric Westhof,et al.  Single Processing Center Models for Human Dicer and Bacterial RNase III , 2004, Cell.

[32]  Dermot F. Reilly,et al.  Integration of Proteomics and Genomics in Platelets , 2004, Molecular & Cellular Proteomics.

[33]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[34]  Peter Bugert,et al.  Messenger RNA profiling of human platelets by microarray hybridization , 2003, Thrombosis and Haemostasis.

[35]  R. Bohle,et al.  Characterization of platelet-specific mRNA by real-time PCR after laser-assisted microdissection , 2003, Thrombosis and Haemostasis.

[36]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[37]  P. Perrotta,et al.  Transcript profiling of human platelets using microarray and serial analysis of gene expression. , 2003, Blood.

[38]  H. Brogren,et al.  Quantification of ADP and ATP receptor expression in human platelets , 2003, Journal of thrombosis and haemostasis : JTH.

[39]  B. Samuelsson,et al.  Ribonuclease activity and RNA binding of recombinant human Dicer , 2002, The EMBO journal.

[40]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[41]  G. Gerisch,et al.  Coactosin-like protein, a human F-actin-binding protein: critical role of lysine-75. , 2001, The Biochemical journal.

[42]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[43]  J. Sixma,et al.  Activated Platelets Release Two Types of Membrane Vesicles: Microvesicles by Surface Shedding and Exosomes Derived From Exocytosis of Multivesicular Bodies and -Granules , 1999 .

[44]  D. Dixon,et al.  Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  K. Gull,et al.  Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. , 1989, Journal of cell science.

[46]  G. Roth,et al.  Circulating human blood platelets retain appreciable amounts of poly (A)+ RNA. , 1989, Biochemical and biophysical research communications.

[47]  L. Laster,et al.  Protein synthesis by human platelets. , 1967, The Journal of biological chemistry.

[48]  Martin J. Simard,et al.  Argonaute proteins: key players in RNA silencing , 2008, Nature Reviews Molecular Cell Biology.

[49]  George A Calin,et al.  MicroRNA fingerprints during human megakaryocytopoiesis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.