Ordinal Measures of Association

Abstract Ordinally invariant, i.e., rank, measures of association for bivariate populations are discussed, with emphasis on the probabilistic and operational interpretations of their population values. The three measures considered at length are the quadrant measure, Kendall's tau, and Spearman's rho. Relationships between these measures are discussed, as are connections between these measures and certain measures of association for cross classifications. Sampling theory is surveyed with special attention to the motivation for sample values of the measures. The historical development of ordinal measures of association is outlined. * This research was supported in part by the Statistics Branch, Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government. A large part of the work leading to this paper was done at the Department of Statistics, University of California, Berkeley. I would like to thank the following persons for their suggestions and c...

[1]  Carr John XXVII. On the causes which have operated in the production of volleys.—No. III , 1809 .

[2]  F. Y. Edgeworth XXII. Correlated averages , 1892 .

[3]  F. Y. Edgeworth VIII. Exercises in the calculation of errors , 1893 .

[4]  A. Binet,et al.  Corrélation des épreuves physiques , 2022 .

[5]  A. Binet,et al.  La fatigue intellectuelle , 2022 .

[6]  W. Sheppard On the Application of the Theory of Error to Cases of Normal Distribution and Normal Correlation , 1899 .

[7]  L. March Comparaison numérique de courbes statistiques , 2022 .

[8]  G. Lipps Die psychischen Massmethoden , 2022 .

[9]  G. Lipps Die Bestimmung der Abhängigkeit zwischen den Merkmalen eines Gegenstandes , 2022 .

[10]  C. Spearman ‘FOOTRULE’ FOR MEASURING CORRELATION , 1906 .

[11]  G. Deuchler Beiträge zur Erforschung der Reaktionsformen , 2022 .

[12]  J. C. Kapteyn Definition of the Correlation-Coefficient , 1912 .

[13]  S. Chapman,et al.  Études sur la formation et le mouvement des prix , 1913 .

[14]  K. Pearson NOTES ON THE HISTORY OF CORRELATION , 1920 .

[15]  Student An Experimental Determination of the Probable Error of Dr Spearman's Correlation Coefficients , 1921 .

[16]  O. Lipmann Abzählende Methoden und ihre Verwendung in der psychologischen Statistik , 1921 .

[17]  Fredrick Esscher On a method of determining correlation from the ranks of the variates , 1924 .

[18]  K. Pearson THE CONTRIBUTION OF GIOVANNI PLANA TO THE NORMAL BIVARIATE FREQUENCY SURFACE , 1928 .

[19]  P. Sandiford Educational psychology : an objective study , 1929 .

[20]  H. M. Walker,et al.  Studies in the history of statistical method , 1930 .

[21]  K. Pearson,et al.  The Life, Letters and Labours of Francis Galton , 1931, Nature.

[22]  H. Schelling Korrelationsmessung auf Grund der Anordnung der Beobachtungen , 1932 .

[23]  R. Risser Les principes de la statistique mathématique , 1933 .

[24]  G. Watkins An Ordinal Index of Correlation , 1933 .

[25]  A. Julin De quelques methodes de determination de la covariation , 1935 .

[26]  Harold Hotelling,et al.  Rank Correlation and Tests of Significance Involving No Assumption of Normality , 1936 .

[27]  E. Thorndike On correlations between measurements which are not normally distributed. , 1937 .

[28]  W. G. Cochran The efficiencies of the binomial series tests of significance of a mean and of a correlation coefficient , 1937 .

[29]  E. G. Olds Distributions of Sums of Squares of Rank Differences for Small Numbers of Individuals , 1938 .

[30]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[31]  Maurice G. Kendall,et al.  THE DISTRIBUTION OF SPEARMAN'S COEFFICIENT OF RANK CORRELATION IN A UNIVERSE IN WHICH ALL RANKINGS OCCUR AN EQUAL NUMBER OF TIMESPART I. THEORETICAL DETERMINATION OF THE SAMPLING DISTRIBUTION OF SPEARMAN'S COEFFICIENT OF RANK CORRELATION , 1939 .

[32]  Maurice G. Kendall,et al.  The Distribution of Spearman's Coefficient of Rank Correlation in a Universe in which all Rankings Occur an Equal Number of Times: , 1939 .

[33]  Wassilij Höffding,et al.  Stochastische Abhängigkeit und funktionaler Zusammenhang , 1942 .

[34]  G. Thornton The significance of rank difference coefficients of correlation , 1943 .

[35]  H. E. Daniels,et al.  The Relation Between Measures of Correlation in the Universe of Sample Permutations , 1944 .

[36]  M. Kendall,et al.  The significance of rank correlations where parental correlation exists. , 1947, Biometrika.

[37]  Wassily Höffding,et al.  On the Distribution of the Rank Correlation Coefficient τ When the Variates are not Independent , 1947 .

[38]  John W. Tukey,et al.  A Corner Test for Association , 1947 .

[39]  M. Kendall Rank Correlation Methods , 1949 .

[40]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[41]  W. Hoeffding A Non-Parametric Test of Independence , 1948 .

[42]  J. Whitfield Intra-class rank correlation. , 1949, Biometrika.

[43]  J. Wolfowitz,et al.  Non-parametric Statistical Inference , 1949 .

[44]  Nils Blomqvist,et al.  On a Measure of Dependence Between two Random Variables , 1950 .

[45]  H. E. Daniels,et al.  Rank Correlation and Population Models , 1950 .

[46]  M. Kendall,et al.  Some questions of distribution in the theory of rank correlation. , 1951, Biometrika.

[47]  James Durbin,et al.  Inversions and Rank Correlation Coefficients , 1951 .

[48]  A. Wijngaarden,et al.  Tables for use in rank correlation , 1953 .

[49]  Frank Wilcoxon,et al.  Rank Correlation Method , 1955 .

[50]  O. Anderson Probleme der statistischen Methodenlehre in den Sozialwissenschaften , 1955 .

[51]  D. E. Barton,et al.  ‘SPEARMAN'S RHO’ AND THE MATCHING PROBLEM , 1956 .

[52]  H. S. Konijn On the Power of Certain Tests for Independence in Bivariate Populations , 1956 .

[53]  L. Adler A Modification of Kendall's Tau for the Case of Arbitrary Ties in Both Rankings , 1957 .

[54]  E. S. Pearson,et al.  TESTS FOR RANK CORRELATION COEFFICIENTS. I , 1957 .

[55]  E. H. Linfoot An Informational Measure of Correlation , 1957, Inf. Control..

[56]  W. Kruskal Historical Notes on the Wilcoxon Unpaired Two-Sample Test , 1957 .

[57]  H. Griffin,et al.  Graphic Computation of Tau as a Coefficient of Disarray , 1958 .

[58]  L. A. Goodman,et al.  Measures of Association for Cross Classifications. II: Further Discussion and References , 1959 .