The time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity

The asymptotic behaviour of solutions of three-dimensional nonlinear elastodynamics in a thin plate is studied, as the thickness h of the plate tends to zero. Under appropriate scalings of the applied force and of the initial values in terms of h, it is shown that three-dimensional solutions of the nonlinear elastodynamic equation converge to solutions of the time-dependent von Kármán plate equation.

[1]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[2]  R. Monneau Justification of the Nonlinear Kirchhoff-Love Theory of Plates as the Application of a New Singular Inverse Method , 2003 .

[3]  J. Ball Some Open Problems in Elasticity , 2002 .

[4]  M. G. Mora,et al.  Large Time Existence for Thin Vibrating Plates , 2009, 0909.2796.

[5]  G. Friesecke,et al.  A theorem on geometric rigidity and the derivation of nonlinear plate theory from three‐dimensional elasticity , 2002 .

[6]  R. Vodák A general asymptotic dynamic model for Lipschitzian elastic curved rods , 2005 .

[7]  J. Tambača Justification of the dynamic model of curved rods , 2002 .

[8]  A. Mielke Saint-Venant's problem and semi-inverse solutions in nonlinear elasticity , 1988 .

[9]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[10]  Philippe G. Ciarlet,et al.  Mathematical elasticity. volume II, Theory of plates , 1997 .

[11]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[12]  G. Friesecke,et al.  Mathematik in den Naturwissenschaften Leipzig A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence , 2005 .

[13]  Liming Xiao Asymptotic analysis of dynamic problems for linearly elastic shells – Justification of equations for dynamic membrane shells , 1998 .

[14]  J. Marsden,et al.  The limits of hamiltonian structures in three-dimensional elasticity, shells, and rods , 1996 .

[15]  Jerrold E. Marsden,et al.  The Limits of Hamiltonian Structures in Three Dimensional Elasticity , Shells , and Rods , 1996 .

[16]  A. Raoult,et al.  Construction d'un modèle d'évolution de plaques avec terme d'inerte de rotation , 1985 .

[17]  S. Antman Nonlinear problems of elasticity , 1994 .

[18]  Convergence of Equilibria of Thin Elastic Plates – The Von Kármán Case , 2008 .

[19]  S. Müller,et al.  Stability of Slender Bodies under Compression and Validity of the von Kármán Theory , 2009 .

[20]  A. Raoult,et al.  The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity , 1995 .

[21]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .