Improving Nonparametric Estimates of the Sea State Bias in Radar Altimeter Measurements of Sea Level

Abstract A fully nonparametric (NP) version of the sea state bias (SSB) estimation problem in radar altimetry was first presented and solved by Gaspar and Florens (GF) using the statistical technique of kernel smoothing. This solution requires solving a large linear system and thus comes with a significant computational burden. In addition, examination of GF SSB estimates reveals a marked bias close to the boundaries of the estimation domain. This paper presents efforts to improve both the skill and the computational efficiency of the GF SSB estimation method. Computational efficiency is rather easily improved by an appropriate kernel choice that transforms the linear system to be solved into a very sparse system for which fast solution algorithms exist. The estimation bias proves to be due to the GF choice of a rudimentary NP estimator for conditional expectations. Use of a more elaborate estimator appears to be possible after a slight adaptation of the method. This solves the bias problem. Further impro...

[1]  Bertrand Chapron,et al.  Improved electromagnetic bias theory , 2000 .

[2]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[3]  Ernesto Rodriguez,et al.  The effect of small-wave modulation on the electromagnetic bias , 1992 .

[4]  R. H. Stewart,et al.  Measurements of electromagnetic bias at Ku and C bands , 1995 .

[5]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[6]  James Stephen Marron,et al.  Choosing a Kernel Regression Estimator , 1991 .

[7]  Bertrand Chapron,et al.  Weakly nonlinear theory and sea state bias estimations , 1999 .

[8]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[9]  Donald L. Hammond,et al.  Nanosecond Radar Observations of the Ocean Surface from a Stable Platform , 1971 .

[10]  Bertrand Chapron,et al.  Altimeter sea state bias: A new look at global range error estimates , 2001 .

[11]  E. Nadaraya,et al.  On the Integral Mean Square Error of Some Nonparametric Estimates for the Density Function , 1974 .

[12]  Edward J. Walsh,et al.  Pulse Compression and Sea Level Tracking in Satellite Altimetry , 1989 .

[13]  Philippe Gaspar,et al.  Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences , 1994 .

[14]  Dudley B. Chelton,et al.  An apparent wave height dependence in the sea-state bias in Geosat altimeter range measurements , 1991 .

[15]  Andrew T. Jessup,et al.  Measurements of electromagnetic bias in radar altimetry , 1991 .

[16]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[17]  Victor Zlotnicki,et al.  Evaluating models of sea state bias in satellite altimetry , 1994 .

[18]  George W. Rosborough,et al.  An empirical determination of the effects of sea state bias on Seasat altimetry , 1982 .

[19]  Lee-Lueng Fu,et al.  THE EFFECT OF THE DEGREE OF WAVE DEVELOPMENT ON THE SEA STATE BIAS IN RADAR ALTIMETRY MEASUREMENT , 1991 .

[20]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[21]  Dudley B. Chelton,et al.  The sea state bias in altimeter estimates of sea level from collinear analysis of TOPEX data , 1994 .

[22]  Victor Zlotnicki,et al.  Seasonal variability in global sea level observed with Geosat altimetry , 1989 .

[23]  Dudley B. Chelton,et al.  A geosat altimeter wind speed algorithm and a method for altimeter wind speed algorithm development , 1991 .

[24]  Chester J. Koblinsky,et al.  On the sea-state bias of the Geosat altimeter , 1991 .

[25]  E. Nadaraya On Estimating Regression , 1964 .

[26]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[27]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[28]  Philippe Gaspar,et al.  Estimation of the sea state bias in radar altimeter measurements of sea level: Results from a new nonparametric method , 1998 .

[29]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .