Extended Kalman Filtering and Pathloss modeling for Shadow Power Parameter Estimation in Mobile Wireless Communications

In this paper accurate estimation of parameters, higher order state space prediction methods and Extended Kalman filter (EKF) for modeling shadow power in wireless mobile communications are developed. Path-loss parameter estimation models are compared and evaluated. Shadow power estimation methods in wireless cellular communications are very important for use in power control of mobile device and base station. The methods are validated and compared to existing methods, Kalman Filter (KF) with Gaussian and Non-Gaussian noise environments. These methods provide better parameter estimation and are more accurate in most realistic situations. EKF can estimate the model channel parameters and predict states in state-space.

[1]  Ioannis D. Schizas,et al.  Power-Efficient Dimensionality Reduction for Distributed Channel-Aware Kalman Tracking Using WSNs , 2009, IEEE Transactions on Signal Processing.

[2]  Nikos D. Sidiropoulos,et al.  Kalman filtering for power estimation in mobile communications , 2003, IEEE Trans. Wirel. Commun..

[3]  Andrea Goldsmith,et al.  Error statistics of real-time power measurements in cellular channels with multipath and shadowing , 1994 .

[4]  Francis C. M. Lau,et al.  Analysis of power control and its imperfections in CDMA cellular systems , 1999 .

[5]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[6]  Mohamed A. Zohdy,et al.  Self organized learning applied to global positioning system (GPS) data , 2006 .

[7]  G. P. Pollini,et al.  Trends in handover design , 1996, IEEE Commun. Mag..

[8]  L. B. Milstein,et al.  Performance of closed-loop power control in DS-CDMA cellular systems , 1998 .

[9]  Andrea J. Goldsmith,et al.  Variable-rate variable-power MQAM for fading channels , 1997, IEEE Trans. Commun..

[10]  Urbashi Mitra,et al.  Variations on optimal and suboptimal handoff control for wireless communication systems , 2001, IEEE J. Sel. Areas Commun..

[11]  D. Wong,et al.  Estimating local mean signal power level in a Rayleigh fading environment , 1999 .

[12]  Ali Abdi,et al.  Estimation of Doppler spread and signal strength in mobile communications with applications to handoff and adaptive transmission , 2001, Wirel. Commun. Mob. Comput..

[13]  Hans D. Hallen,et al.  Long-range prediction of fading signals , 2000, IEEE Signal Process. Mag..

[14]  Stergios I. Roumeliotis,et al.  SOI-KF: Distributed Kalman Filtering With Low-Cost Communications Using The Sign Of Innovations , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[15]  Gordon L. Stüber Principles of mobile communication , 1996 .

[16]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[17]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[18]  Mohamed Najim,et al.  Consistent estimation of autoregressive parameters from noisy observations based on two interacting Kalman filters , 2006, Signal Process..

[19]  Shuangqing Wei,et al.  Adaptive signaling based on measurements with statistical uncertainty , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[20]  T. K. Radhakrishnan,et al.  Implementation of a Simple Wireless Sensor Node for the Detection of Gaseous Substances Leakage , 2011 .

[21]  Yujie Liang,et al.  MODEL BASED APPLICATION LEVEL MIDDLEWARE FOR DESIGN OF WIRELESS SMART CITY , 2013 .

[22]  J. M. Holtzman,et al.  A model for analyzing handoff algorithms (cellular radio) , 1993 .

[23]  Rik Pintelon,et al.  Nonlinear State Space Modelling Of Multivariable Systems , 2006 .

[24]  Mahdi N. Ali,et al.  Interactive Kalman Filtering for Differential and Gaussian Frequency Shift Keying Modulation with Application in Bluetooth , 2012 .

[25]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[26]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[27]  Mohammed Zohdy,et al.  Type-2 Fuzzy Kalman Hybrid Application for Dynamic Security Monitoring Systems based on Multiple Sensor Fusion , 2011 .

[28]  C. Tepedelenlioglu,et al.  Median filtering for power estimation in mobile communication systems , 2001, 2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471).

[30]  D. Giancristofaro,et al.  Correlation model for shadow fading in mobile radio channels , 1996 .