Biologically inspired dynamic material systems.

Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems.

[1]  Richard Weinkamer,et al.  Mechanical adaptation of biological materials — The examples of bone and wood , 2011 .

[2]  Hyo-Jick Choi,et al.  Artificial organelle: ATP synthesis from cellular mimetic polymersomes. , 2005, Nano letters.

[3]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[4]  Linge Wang,et al.  Synthetischer Bionanoreaktor: mechanische und chemische Kontrolle der Permeabilität von Polymersom‐Membranen , 2012 .

[5]  E. Demaine,et al.  Self-folding with shape memory composites† , 2013 .

[6]  Andreas Walther,et al.  Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties. , 2010, Angewandte Chemie.

[7]  Pasquale Stano,et al.  Approaches to semi-synthetic minimal cells: a review , 2005, Naturwissenschaften.

[8]  Stephan Marsch,et al.  Toward intelligent nanosize bioreactors: a pH-switchable, channel-equipped, functional polymer nanocontainer. , 2006, Nano letters.

[9]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[10]  J. W. C. Dunlop,et al.  New Suggestions for the Mechanical Control of Bone Remodeling , 2009, Calcified Tissue International.

[11]  Alexander G Robling,et al.  Biomechanical and molecular regulation of bone remodeling. , 2006, Annual review of biomedical engineering.

[12]  Leonid Ionov,et al.  Soft microorigami: self-folding polymer films , 2011 .

[13]  Larry L. Hench,et al.  Principles of electronic ceramics , 1990 .

[14]  Vincent Noireaux,et al.  A vesicle bioreactor as a step toward an artificial cell assembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Johan W. Berenschot,et al.  Fabrication of superficial neuromast inspired capacitive flow sensors , 2010 .

[16]  J. Lewis,et al.  Self-healing materials with microvascular networks. , 2007, Nature materials.

[17]  André R. Studart,et al.  Biological and Bioinspired Composites with Spatially Tunable Heterogeneous Architectures , 2013 .

[18]  Tien,et al.  Forming electrical networks in three dimensions by self-assembly , 2000, Science.

[19]  R. M. Erb,et al.  Temporal response of magnetically labeled platelets under dynamic magnetic fields , 2013 .

[20]  T. Martin,et al.  Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. , 2014, BoneKEy reports.

[21]  André R Studart,et al.  Self-shaping composites with programmable bioinspired microstructures , 2013, Nature Communications.

[22]  C. Dawson,et al.  How pine cones open , 1997, Nature.

[23]  Fenghua Meng,et al.  Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[24]  D. Velegol,et al.  Chemotaxis of nonbiological colloidal rods. , 2007, Physical review letters.

[25]  M. Srinivasan,et al.  Frontiers in Sensing , 2012, Springer Vienna.

[26]  Rina Tannenbaum,et al.  Capture/release ability of thermo-responsive polymer particles , 2010 .

[27]  F. Barth,et al.  Biomaterial systems for mechanosensing and actuation , 2009, Nature.

[28]  Stephen Mann,et al.  Systems of creation: the emergence of life from nonliving matter. , 2012, Accounts of chemical research.

[29]  André R Studart,et al.  Composites Reinforced in Three Dimensions by Using Low Magnetic Fields , 2012, Science.

[30]  Peter Fratzl,et al.  Cellulose fibrils direct plant organ movements. , 2008, Faraday discussions.

[31]  David Gräfe,et al.  Cross-linked polymersomes as nanoreactors for controlled and stabilized single and cascade enzymatic reactions. , 2014, Nanoscale.

[32]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[33]  D. Weitz,et al.  Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. , 2008, Journal of the American Chemical Society.

[34]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[35]  Gijsbertus J.M. Krijnen,et al.  Design and fabrication process for artificial lateral line sensors , 2012 .

[36]  A. Parfitt Osteonal and hemi‐osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone , 1994, Journal of cellular biochemistry.

[37]  Randall M. Erb,et al.  Non-linear alignment dynamics in suspensions of platelets under rotating magnetic fields , 2012 .

[38]  Michael P Brenner,et al.  Self-replicating colloidal clusters , 2014, Proceedings of the National Academy of Sciences.

[39]  H. Bleckmann Nature as model for technical sensors , 2004 .

[40]  Kyle D. Anderson,et al.  Bioinspired Material Approaches to Sensing , 2009 .

[41]  Peter Hagedorn,et al.  Dynamic control for morphing of bi-stable composites , 2013 .

[42]  W. Huck,et al.  Controlled Folding of 2D Au–Polymer Brush Composites into 3D Microstructures , 2011 .

[43]  D. Riddle,et al.  Interacting genes in nematode dauer larva formation , 1981, Nature.

[44]  J. Wolff The Law of Bone Remodelling , 1986, Springer Berlin Heidelberg.

[45]  Matthew Rosseinsky,et al.  Electroceramics , 2009 .

[46]  Leonid Ionov,et al.  Shape-programmed folding of stimuli-responsive polymer bilayers. , 2012, ACS nano.

[47]  Hartmut Janocha,et al.  Adaptronics and Smart Structures: Basics, Materials, Design, and Applications , 2007 .

[48]  Sheryl Coombs,et al.  Smart Skins: Information Processing by Lateral Line Flow Sensors , 2001, Auton. Robots.

[49]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[50]  Samuel Sanchez,et al.  Transport of cargo by catalytic Janus micro-motors , 2012 .

[51]  Peter Fratzl,et al.  Origami-like unfolding of hydro-actuated ice plant seed capsules. , 2011, Nature communications.

[52]  Madhavan Nallani,et al.  Biohybrid polymer capsules. , 2009, Chemical reviews.

[53]  Samudra Sengupta,et al.  Die phantastische Reise: Nanoroboter mit Eigenantrieb , 2012 .

[54]  R. Elbaum,et al.  The Role of Wheat Awns in the Seed Dispersal Unit , 2007, Science.

[55]  L. Ionov Biomimetic Hydrogel‐Based Actuating Systems , 2013 .

[56]  David J. Pine,et al.  Towards self-replicating materials of DNA-functionalized colloids , 2009 .

[57]  D. Bartel,et al.  Synthesizing life : Paths to unforeseeable science & technology , 2001 .

[58]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[59]  Wolfgang Meier,et al.  Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. , 2011, Accounts of chemical research.

[60]  A. Walther,et al.  Supramolekulare Kontrolle der mechanischen Eigenschaften feuerabschirmender biomimetischer Perlmuttanaloga , 2010 .

[61]  Kenichi Yoshikawa,et al.  Gene Expression within Cell‐Sized Lipid Vesicles , 2003, ChemBioChem.

[62]  Ximin He,et al.  Synthetic homeostatic materials with chemo-mechano-chemical self-regulation , 2012, Nature.

[63]  L. Mahadevan,et al.  Hygromorphs: from pine cones to biomimetic bilayers , 2009, Journal of The Royal Society Interface.

[64]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[65]  M. Meyers,et al.  Magnetic freeze casting inspired by nature , 2012 .

[66]  Lauren D. Zarzar,et al.  Stimuli-responsive chemomechanical actuation: a hybrid materials approach. , 2014, Accounts of chemical research.

[67]  Liza J. Raggatt,et al.  Cellular and Molecular Mechanisms of Bone Remodeling* , 2010, The Journal of Biological Chemistry.

[68]  Stephen Z. D. Cheng,et al.  Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms , 2011 .

[69]  Pasquale Stano,et al.  Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. , 2010, Chemical communications.

[70]  Yutetsu Kuruma,et al.  Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles , 2011 .

[71]  Joanna Aizenberg,et al.  Bio‐inspired Design of Submerged Hydrogel‐Actuated Polymer Microstructures Operating in Response to pH , 2011, Advanced materials.

[72]  A. Studart,et al.  Monodisperse functional colloidosomes with tailored nanoparticle shells. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[73]  Yingchen Yang,et al.  Artificial lateral line canal for hydrodynamic detection , 2011 .

[74]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[75]  H. Frost Bone “mass” and the “mechanostat”: A proposal , 1987, The Anatomical record.

[76]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[77]  Giuseppe Battaglia,et al.  Synthetic bio-nanoreactor: mechanical and chemical control of polymersome membrane permeability. , 2012, Angewandte Chemie.

[78]  Junliang Tao,et al.  Hair flow sensors: from bio-inspiration to bio-mimicking—a review , 2012 .

[79]  Ayusman Sen,et al.  Fantastic voyage: designing self-powered nanorobots. , 2012, Angewandte Chemie.

[80]  Hongyan He,et al.  Fabrication of particulate reservoir-containing, capsulelike, and self-folding polymer microstructures for drug delivery. , 2007, Small.

[81]  Stephen Mann,et al.  Electrostatically gated membrane permeability in inorganic protocells. , 2015 .

[82]  Douglas L. Jones,et al.  Distant touch hydrodynamic imaging with an artificial lateral line , 2006, Proceedings of the National Academy of Sciences.

[83]  Jin Zhai,et al.  Super-hydrophobic surfaces: From natural to artificial , 2002 .

[84]  P. Luisi,et al.  Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. , 1995, Biochemical and biophysical research communications.

[85]  Adam Blanazs,et al.  Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. , 2009, Macromolecular rapid communications.

[86]  S. Ichikawa,et al.  Enzymes inside lipid vesicles: preparation, reactivity and applications. , 2001, Biomolecular engineering.

[87]  André R Studart,et al.  Towards High‐Performance Bioinspired Composites , 2012, Advanced materials.

[88]  P. Luisi,et al.  Polymerase chain reaction in liposomes. , 1995, Chemistry & biology.

[89]  H. Lodish Molecular Cell Biology , 1986 .

[90]  Daeyeon Lee,et al.  Double Emulsion‐Templated Nanoparticle Colloidosomes with Selective Permeability , 2008 .

[91]  C. Liu,et al.  Recent Developments in Polymer MEMS , 2007 .

[92]  F Barthelat,et al.  Overcoming the brittleness of glass through bio-inspiration and micro-architecture , 2014, Nature Communications.

[93]  A. Studart,et al.  Nanoparticle-filled complex colloidosomes for tunable cargo release. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[94]  R. Kupferman,et al.  Geometry and Mechanics in the Opening of Chiral Seed Pods , 2011, Science.

[95]  John D. Currey,et al.  Bones: Structure and Mechanics , 2002 .

[96]  André R Studart,et al.  Bioinspired materials that self-shape through programmed microstructures. , 2014, Soft matter.

[97]  Manfred Schliwa,et al.  Molecular motors , 2003, Nature.

[98]  G. Whitesides,et al.  Fabrication of Micrometer‐Scale, Patterned Polyhedra by Self‐Assembly , 2002 .

[99]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[100]  Maïté Marguet,et al.  Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. , 2013, Chemical Society reviews.