Ocean deoxygenation in a warming world.

Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.

[1]  Chris Brown Volume 1: Introduction , 2012 .

[2]  S. Levitus,et al.  World ocean atlas 2009 , 2010 .

[3]  Ulf Riebesell,et al.  Sensitivities of marine carbon fluxes to ocean change , 2009, Proceedings of the National Academy of Sciences.

[4]  Nicolas Gruber,et al.  Observing Biogeochemical Cycles at Global Scales With Profiling Floats and Gliders Prospects for a Global Array , 2009 .

[5]  Edward T. Peltzer,et al.  Limits to Marine Life , 2009, Science.

[6]  H. Schellnhuber,et al.  Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes , 2009, Proceedings of the National Academy of Sciences.

[7]  F. Joos,et al.  Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle–climate model ensemble , 2009 .

[8]  Taro Takahashi,et al.  Oceanic sources, sinks, and transport of atmospheric CO2 , 2009 .

[9]  S. Olsen,et al.  Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels , 2009 .

[10]  D. Breitburg,et al.  Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes. , 2009, Annual review of marine science.

[11]  A. Oschlies,et al.  Simulated 21st century's increase in oceanic suboxia by CO2‐enhanced biotic carbon export , 2008 .

[12]  S. Rintoul,et al.  The response of the Antarctic Circumpolar Current to recent climate change , 2008 .

[13]  A. Farrell,et al.  Physiology and Climate Change , 2008, Science.

[14]  Carlos M. Duarte,et al.  Thresholds of hypoxia for marine biodiversity , 2008, Proceedings of the National Academy of Sciences.

[15]  Gregory R. Foltz,et al.  Trends in Saharan dust and tropical Atlantic climate during 1980–2006 , 2008 .

[16]  S. Doney,et al.  Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink , 2008 .

[17]  Stephen C. Riser,et al.  Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific , 2008 .

[18]  R. Rosenberg,et al.  Spreading Dead Zones and Consequences for Marine Ecosystems , 2008, Science.

[19]  K. Bruland,et al.  Elevated Fe(II) and dissolved Fe in hypoxic shelf waters off Oregon and Washington: an enhanced source of iron to coastal upwelling regimes. , 2008, Environmental science & technology.

[20]  R. Feely,et al.  Decadal changes in Pacific carbon , 2008 .

[21]  F. Chavez,et al.  Oxygen declines and the shoaling of the hypoxic boundary in the California Current , 2008 .

[22]  Peter J. Gleckler,et al.  Improved estimates of upper-ocean warming and multi-decadal sea-level rise , 2008, Nature.

[23]  J. Sprintall,et al.  Expanding Oxygen-Minimum Zones in the Tropical Oceans , 2008, Science.

[24]  P. Monteiro,et al.  Interannual hypoxia variability in a coastal upwelling system: Ocean–shelf exchange, climate and ecosystem-state implications , 2008 .

[25]  Andreas Oschlies,et al.  Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business‐as‐usual CO2 emission scenario until year 4000 AD , 2008 .

[26]  K. Lindsay,et al.  Impact of ocean carbon system variability on the detection of temporal increases in anthropogenic CO2 , 2008 .

[27]  J. Lubchenco,et al.  Emergence of Anoxia in the California Current Large Marine Ecosystem , 2008, Science.

[28]  K. Keller,et al.  Measuring oxygen concentrations to improve the detection capabilities of an ocean circulation observation array , 2008 .

[29]  Stephen C. Riser,et al.  Net production of oxygen in the subtropical ocean , 2008, Nature.

[30]  J. Toggweiler,et al.  Ocean circulation in a warming climate , 2008, Nature.

[31]  Corinne Le Quéré,et al.  Interannual variability in oceanic biogeochemical processes inferred by inversion of atmospheric O2/N2 and CO2 data , 2008 .

[32]  T. Machida,et al.  Atmospheric O2/N2 measurements at two Japanese sites: estimation of global oceanic and land biotic carbon sinks and analysis of the variations in atmospheric potential oxygen (APO) , 2008 .

[33]  R. Keeling,et al.  Ocean ventilation as a driver of interannual variability in atmospheric potential oxygen , 2008 .

[34]  N. Gruber The marine nitrogen cycle: Overview of distributions and processes , 2008 .

[35]  Verena Hormann,et al.  Oxygen tongues and zonal currents in the equatorial Atlantic , 2008 .

[36]  A. Coe,et al.  The Late Palaeocene–Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences , 2007, Journal of the Geological Society.

[37]  Howard J. Freeland,et al.  Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific , 2007 .

[38]  Casper Labuschagne,et al.  Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change , 2007, Science.

[39]  S. Doney,et al.  Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode , 2007 .

[40]  S. Watanabe,et al.  Decadal increases of anthropogenic CO2 in the South Pacific subtropical ocean along 32°S , 2007 .

[41]  G. Johnson,et al.  Decadal water mass variations along 20°W in the Northeastern Atlantic Ocean , 2007 .

[42]  K. Ohshima,et al.  Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1955–2004 , 2007 .

[43]  Nicolas Gruber,et al.  Spatial coupling of nitrogen inputs and losses in the ocean , 2007, Nature.

[44]  U. Riebesell,et al.  Enhanced biological carbon consumption in a high CO2 ocean , 2006, Nature.

[45]  Scott C. Doney,et al.  The ARGO-Oxygen Program - A white paper to promote the addition of oxygen sensors to the international Argo float program , 2007 .

[46]  H. L. Miller,et al.  Global climate projections , 2007 .

[47]  J. Karstensen,et al.  The oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans , 2008 .

[48]  R. Feely,et al.  Climate variability in the North Pacific thermocline diagnosed from oxygen measurements: An update based on the U.S. CLIVAR/CO2 Repeat Hydrography cruises , 2006 .

[49]  M. Follows,et al.  Carbon dioxide and oxygen fluxes in the Southern Ocean: Mechanisms of interannual variability , 2006 .

[50]  W. Dean,et al.  Sediment Cd and Mo Accumulation in the Oxygen-Minimum Zone off Western Baja California Linked to Global Climate Over the Past 52 Kyr , 2006 .

[51]  C. Deutsch,et al.  Physical-biological interactions in North Pacific oxygen variability , 2006 .

[52]  A. Oschlies,et al.  Role of wind stress and heat fluxes in interannual‐to‐decadal variability of air‐sea CO2 and O2 fluxes in the North Atlantic , 2006 .

[53]  S. Jacobs Observations of change in the Southern Ocean , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  A. Gnanadesikan,et al.  How does ocean ventilation change under global warming , 2006 .

[55]  A. Andreev,et al.  Impacts of tides and atmospheric forcing variability on dissolved oxygen in the subarctic North Pacific , 2006 .

[56]  Jorge L. Sarmiento,et al.  Ocean Biogeochemical Dynamics , 2006 .

[57]  I. Yasuda,et al.  Bidecadal variability in the intermediate waters of the northwestern subarctic Pacific and the Okhotsk Sea in relation to 18.6‐year period nodal tidal cycle , 2006 .

[58]  H. Tatebe,et al.  Possible explanation linking 18.6‐year period nodal tidal cycle with bi‐decadal variations of ocean and climate in the North Pacific , 2006 .

[59]  A. Manning,et al.  Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models , 2006 .

[60]  Stefan Sommer,et al.  Evaluation of a lifetime‐based optode to measure oxygen in aquatic systems , 2006 .

[61]  A. Manning,et al.  Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network , 2006 .

[62]  J. L. Bullister,et al.  Temporal changes in pCFC-12 ages and AOU along two hydrographic sections in the eastern subtropical North Pacific , 2006 .

[63]  Timothy P. Boyer,et al.  World Ocean Atlas 2005, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation [+DVD] , 2006 .

[64]  L. Neretin Past and present water column anoxia , 2006 .

[65]  D. Gilbert,et al.  A seventy‐two‐year record of diminishing deep‐water oxygen in the St. Lawrence estuary: The northwest Atlantic connection , 2005 .

[66]  E. Maier‐Reimer,et al.  Sea‐to‐air CO2 flux from 1948 to 2003: A model study , 2005 .

[67]  H. Bryden,et al.  Decadal Changes in the South Indian Ocean Thermocline , 2005 .

[68]  D. Canfield,et al.  Anaerobic ammonium oxidation (anammox) in the marine environment. , 2005, Research in microbiology.

[69]  S. Aoki,et al.  Interdecadal water mass changes in the Southern Ocean between 30°E and 160°E , 2005 .

[70]  Arne Körtzinger,et al.  High Quality Oxygen Measurements from Profiling Floats: A Promising New Technique , 2005 .

[71]  A. Körtzinger,et al.  The Ocean Takes a Deep Breath , 2004, Science.

[72]  Scarla J. Weeks,et al.  Greenhouse gas buildup, sardines, submarine eruptions and the possibility of abrupt degradation of intense marine upwelling ecosystems , 2004 .

[73]  E. Boyle,et al.  Is AOU a good measure of respiration in the oceans? , 2004, Geophysical Research Letters.

[74]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[75]  David S. Fox,et al.  Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific , 2004, Nature.

[76]  John Gould,et al.  Argo profiling floats bring new era of in situ ocean observations , 2004 .

[77]  P. Oke,et al.  Oceanic Response to Changes in the Latitude of the Southern Hemisphere Subpolar Westerly Winds , 2004 .

[78]  T. Ono,et al.  Temporal Trends in Apparent Oxygen Utilization in the Upper Pycnocline of the North Pacific: 1980–2000 , 2004 .

[79]  R. Feely,et al.  Oxygen Utilization and Organic Carbon Remineralization in the Upper Water Column of the Pacific Ocean , 2004 .

[80]  N. Gruber The Dynamics of the Marine Nitrogen Cycle and its Influence on Atmospheric CO2 Variations , 2004 .

[81]  A. Hirst,et al.  Long‐term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming , 2003 .

[82]  T. Ono,et al.  Synchronous bidecadal periodic changes of oxygen, phosphate and temperature between the Japan Sea deep water and the North Pacific intermediate water , 2003 .

[83]  N. Gruber,et al.  Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions , 2003 .

[84]  J. Butler,et al.  Global distribution of N2O and the ΔN2O‐AOU yield in the subsurface ocean , 2003 .

[85]  J. Bernhard,et al.  On the preservation of laminated sediments along the western margin of North America , 2003 .

[86]  Nathan P. Gillett,et al.  Simulation of Recent Southern Hemisphere Climate Change , 2003, Science.

[87]  K. Wallmann Feedbacks between oceanic redox states and marine productivity: A model perspective focused on benthic phosphorus cycling , 2003 .

[88]  F. Joos,et al.  Trends in marine dissolved oxygen: Implications for ocean circulation changes and the carbon budget , 2003 .

[89]  J. Toggweiler,et al.  Representation of the carbon cycle in box models and GCMs, 2, Organic pump , 2003 .

[90]  M. Follows,et al.  Interannual variability of air‐sea O2 fluxes and the determination of CO2 sinks using atmospheric O2/N2 , 2003 .

[91]  L. Levin Oxygen minimum zone Benthos: Adaptation and community response to hypoxia , 2003 .

[92]  F. Joos,et al.  Revision of the global carbon budget due to changing air‐sea oxygen fluxes , 2002 .

[93]  John S. Gray,et al.  Effects of hypoxia and organic enrichment on the coastal marine environment , 2002 .

[94]  S. Watanabe,et al.  Temporal changes in dissolved oxygen of the intermediate water in the subarctic North Pacific , 2002 .

[95]  Ralph F. Keeling,et al.  THE CHANGE IN OCEANIC 02 INVENTORY ASSOCIATED WITH RECENT GLOBAL WARMING , 2022 .

[96]  M. Heimann,et al.  Climate‐induced oceanic oxygen fluxes: Implications for the contemporary carbon budget , 2002 .

[97]  B. V. Mooy,et al.  Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification , 2002 .

[98]  Stephen Calvert,et al.  Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories , 2002, Nature.

[99]  Hans W. Paerl,et al.  The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?* , 2001 .

[100]  M. Gloor,et al.  Air‐sea flux of oxygen estimated from bulk data: Implications For the marine and atmospheric oxygen cycles , 2001 .

[101]  F. Joos,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming: Ocean carbon uptake , 2001 .

[102]  T. Saino,et al.  Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 to 1998 , 2001 .

[103]  Y. Watanabe,et al.  Probability of a reduction in the formation rate of the subsurface water in the North Pacific during the 1980s and 1990s , 2001 .

[104]  S. Emerson,et al.  The biological pump in the subtropical North Pacific Ocean: Nutrient sources, Redfield ratios, and recent changes , 2001 .

[105]  M. Kusakabe,et al.  Interdecadal variability in dissolved oxygen in the intermediate water layer of the Western Subarctic Gyre and Kuril Basin (Okhotsk Sea) , 2001 .

[106]  P. Quay,et al.  Redfield ratios revisited: Removing the biasing effect of anthropogenic CO2 , 2001 .

[107]  C. E. Jones,et al.  Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous , 2001, American Journal of Science.

[108]  Gian-Kasper Plattner,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming , 2001 .

[109]  R. Slater,et al.  Possible biological or physical explanations for decadal scale trends in North Pacific nutrient concentrations and oxygen utilization , 2001 .

[110]  A. Hirst,et al.  Changes in dissolved oxygen in the Southern Ocean with climate change , 2000 .

[111]  E. Boyle,et al.  Glacial/interglacial variations in atmospheric carbon dioxide , 2000, Nature.

[112]  N. Bindoff,et al.  Decadal Changes along an Indian Ocean Section at 32°S and Their Interpretation , 2000 .

[113]  O. Ulloa,et al.  Warming and circulation change in the eastern South Pacific Ocean , 2000 .

[114]  B. Stephens,et al.  The influence of Antarctic sea ice on glacial–interglacial CO 2 variations , 2000, Nature.

[115]  Timothy M. Lenton,et al.  Redfield revisited: 1. Regulation of nitrate, phosphate, and oxygen in the ocean , 2000 .

[116]  T. Gamo Global warming may have slowed down the deep conveyor belt of a marginal sea of the northwestern Pacific: Japan Sea , 1999 .

[117]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[118]  Shoshiro Minobe,et al.  Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts , 1999 .

[119]  R. Feely,et al.  Quantification of decadal anthropogenic CO2 uptake in the ocean based on dissolved inorganic carbon measurements , 1998, Nature.

[120]  M. Heimann,et al.  Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration , 1998 .

[121]  Syukuro Manabe,et al.  Simulated response of the ocean carbon cycle to anthropogenic climate warming , 1998, Nature.

[122]  H. Schulz,et al.  Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years , 1998 .

[123]  H. Garcia,et al.  Decadal-scale chemical variability in the subtropical North Atlantic deduced from nutrient and oxygen data , 1998 .

[124]  K. Denman,et al.  Evidence of change in the winter mixed layer in the Northeast Pacific Ocean , 1997 .

[125]  T. Stocker,et al.  An improved method for detecting anthropogenic CO 2 in the oceans , 1997 .

[126]  T. Stocker,et al.  An improved method for detecting anthropogenic CO2 in the oceans , 1996 .

[127]  R. Twitchett,et al.  Oceanic Anoxia and the End Permian Mass Extinction , 1996, Science.

[128]  Martin Heimann,et al.  Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration , 1996, Nature.

[129]  J. Severinghaus Studies of the terrestrial O{sub 2} and carbon cycles in sand dune gases and in biosphere 2 , 1995 .

[130]  J. Kennett,et al.  A 20,000-year record of ocean circulation and climate change from the Santa Barbara basin , 1995, Nature.

[131]  R. Rosenberg,et al.  Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna , 1995 .

[132]  R. Jahnke,et al.  Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters , 1994 .

[133]  Ralph F. Keeling,et al.  Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle , 1992, Nature.

[134]  W. Broecker,et al.  The Peru Upwelling and the Ventilation of the South Pacific Thermocline , 1991 .

[135]  W. Broecker,et al.  Radiocarbon decay and oxygen utilization in the Deep Atlantic Ocean , 1991 .

[136]  A. Gordon,et al.  Southern ocean winter mixed layer , 1990 .

[137]  R. Keeling Development of an interferometric oxygen analyzer for precise measurement of the atmospheric O[2] mole fraction , 1988 .

[138]  W. Jenkins 3H and 3He in the Beta Triangle: Observations of Gyre Ventilation and Oxygen Utilization Rates , 1987 .

[139]  David M. Karl,et al.  VERTEX: carbon cycling in the northeast Pacific , 1987 .

[140]  H. Barnes Oceanography and marine biology : an annual review , 1986 .

[141]  A. Devol,et al.  Nitrogen in the Marine Environment , 1985 .

[142]  J. Pedlosky,et al.  The Ventilated Thermocline , 1983 .

[143]  S. A. Rahim,et al.  Determination of dissolved oxygen in water. , 1978, Talanta.

[144]  J. H. Carpenter THE CHESAPEAKE BAY INSTITUTE TECHNIQUE FOR THE WINKLER DISSOLVED OXYGEN METHOD , 1965 .

[145]  K. Wyrtki The oxygen minima in relation to ocean circulation , 1962 .

[146]  H. Sverdrup On the Explanation of the Oxygen Minima and Maxima in the Oceans , 1938 .

[147]  L. W. Winkler,et al.  Die Bestimmung des im Wasser gelösten Sauerstoffes , 1888 .

[148]  M. Sakata,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2022 .