The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides.

Searching for experimentally feasible intrinsic quantum anomalous Hall (QAH) insulators is of great significance for dissipationless electronics applications. Here we predict, based on density functional theory (DFT), that four monolayer transition metal tri-bromides (VBr3, FeBr3, NiBr3, and PdBr3) are endowed with intrinsic half-metallicity and possess quantum anomalous Hall insulating phases. DFT+U calculations reveal that the VBr3, NiBr3, and PdBr3 monolayers undergo nontrivial to Mott insulator transitions with increasing on-site Hubbard Coulomb interaction U at 0.5, 2 and 3 eV. The gap opening induced by the spin-orbit coupling drives the systems into the QAH state. The Curie temperatures of the VBr3, NiBr3, and PdBr3 monolayers are ∼190, 100 and 110 K. Additionally, the calculated cleavage energies suggest that the freestanding VBr3, FeBr3, NiBr3, and PdBr3 monolayers can be easily produced by exfoliation using adhesive tape, which may stimulate experimental research interest to achieve QAH phases.

[1]  Zheng Li,et al.  Strain-tunable magnetic anisotropy in two-dimensional Dirac half-metals: nickel trihalides , 2019, RSC advances.

[2]  G. Su,et al.  Two-Dimensional Room-Temperature Ferromagnetic Semiconductors with Quantum Anomalous Hall Effect , 2019, Physical Review Applied.

[3]  N. Kioussis,et al.  Intrinsic ferromagnetism and topological properties in two-dimensional rhenium halides. , 2019, Nanoscale.

[4]  Ping Li Prediction of intrinsic two dimensional ferromagnetism realized quantum anomalous Hall effect. , 2019, Physical chemistry chemical physics : PCCP.

[5]  Hui Liu,et al.  Physical realization of 2D spin liquid state by ab initio design and strain engineering in FeX3 , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  N. Kioussis,et al.  Prediction of manganese trihalides as two-dimensional Dirac half-metals , 2018 .

[7]  H. Xiang,et al.  Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer. , 2018, Physical review letters.

[8]  Bin Xu,et al.  2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. , 2018, Journal of the American Chemical Society.

[9]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[10]  B. Nikolić,et al.  Monolayer of the 5 d transition metal trichloride OsCl 3 : A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions , 2017 .

[11]  M. McGuire Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides , 2017, 1704.08225.

[12]  Qiyuan He,et al.  Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.

[13]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[14]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[15]  Petr Nachtigall,et al.  Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: nickel chloride monolayer. , 2017, Nanoscale.

[16]  B. Nikolić,et al.  Monolayer of the 5 d transition metal trichloride OsCl 3 : A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions , 2016, 1610.02719.

[17]  Haiping Wu,et al.  Quantum anomalous Hall effect in ferromagnetic transition metal halides , 2016, 1609.08115.

[18]  Kang L. Wang,et al.  Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure , 2016, Science.

[19]  Petr Nachtigall,et al.  Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: nickel chloride monolayer. , 2016, Nanoscale.

[20]  Zhongqin Yang,et al.  Quantum anomalous Hall effect in real materials , 2016 .

[21]  Qiang Sun,et al.  Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. , 2016, Physical chemistry chemical physics : PCCP.

[22]  Qian Niu,et al.  Topological phases in two-dimensional materials: a review , 2015, Reports on progress in physics. Physical Society.

[23]  K. Dolui,et al.  Intrinsic large gap quantum anomalous Hall insulators in LaX (X = Br,Cl,I) , 2015, 1608.06056.

[24]  Yugui Yao,et al.  Robust quantum anomalous Hall effect in graphene-based van der Waals heterostructures , 2015 .

[25]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[26]  Shou-Cheng Zhang,et al.  Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs_{2}LiMn_{3}F_{12}. , 2015, Physical review letters.

[27]  Ajit C. Balram,et al.  Luttinger Theorem for the Strongly Correlated Fermi Liquid of Composite Fermions. , 2015, Physical review letters.

[28]  Quanshui Zheng,et al.  Measurement of the cleavage energy of graphite , 2015, Nature Communications.

[29]  S. Singh,et al.  Stable half-metallic monolayers of FeCl2 , 2015, 1507.08420.

[30]  Don Heiman,et al.  High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. , 2014, Nature materials.

[31]  S. Roche,et al.  Multiple quantum phases in graphene with enhanced spin-orbit coupling: from the quantum spin Hall regime to the spin Hall effect and a robust metallic state. , 2014, Physical review letters.

[32]  Y. Tokura,et al.  Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator , 2014, Nature Physics.

[33]  Kang L. Wang,et al.  Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. , 2014, Physical review letters.

[34]  Binghai Yan,et al.  Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials. , 2014, Physical review letters.

[35]  Wei Ren,et al.  Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. , 2014, Physical review letters.

[36]  Congjun Wu,et al.  Honeycomb lattice with multiorbital structure: Topological and quantum anomalous Hall insulators with large gaps , 2014, 1403.0563.

[37]  N. Nagaosa,et al.  Giant thermoelectric effect in graphene-based topological insulators with heavy adatoms and nanopores. , 2014, Nano letters.

[38]  Xiong-Jun Liu,et al.  Topological spin texture in a quantum anomalous Hall insulator. , 2014, Physical review letters.

[39]  M. Ezawa Spin valleytronics in silicene: Quantum spin Hall–quantum anomalous Hall insulators and single-valley semimetals , 2013, 1301.0971.

[40]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[41]  Stefan Blügel,et al.  Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms. , 2012, Physical review letters.

[42]  J. Ding,et al.  Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study , 2011 .

[43]  Magnetic and Electronic Properties of Metal-Atom Adsorbed Graphene , 2011, 1108.6235.

[44]  S. Heinze,et al.  Electrically tunable quantum anomalous Hall effect in 5d transition-metal adatoms on graphene , 2011, 1108.5915.

[45]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[46]  Jun Ding,et al.  Quantum anomalous Hall effect in graphene from Rashba and exchange effects , 2010, 1005.1672.

[47]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[48]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[49]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[50]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[53]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[54]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[55]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[56]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[57]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .

[58]  Philip W. Anderson,et al.  Antiferromagnetism. Theory of Superexchange Interaction , 1950 .