Changes in Coleopteran assemblages over a successional chronosequence in a Mexican tropical dry forest

Coleopterans are the most diverse animal group on Earth and constitute good indicators of environmental change. However, little information is available about Coleopteran communities’ responses to disturbance and land-use change. Tropical dry forests have undergone especially extensive anthropogenic impacts in the past decades. This has led to mosaic landscapes consisting of areas of primary forest surrounded by pastures, agricultural fields and secondary forests, which negatively impacts many taxonomic groups. However, such impacts have not been assessed for most arthropod groups. In this work, we compared the abundance, richness and diversity of Coleopteran morphospecies in four different successional stages in a tropical dry forest in western Mexico, to answer the question: How do Coleopteran assemblages associate with vegetation change over the course of forest succession? In addition, we assessed the family composition and trophic guilds for the four successional stages. We found 971 Coleopterans belonging to 107 morphospecies distributed in 28 families. Coleopteran abundance and richness were greatest for pastures than for latter successional stages, and the most abundant family was Chrysomelidae, with 29% of the individuals. Herbivores were the most abundant guild, accounting for 57% of the individuals, followed by predators (22%) and saprophages (21%) beetles. Given the high diversity and richness found throughout the successional chronosequence of the studied tropical dry forest, in order to have the maximum number of species associated with tropical dry forests, large tracts of forest should be preserved so that successional dynamics are able to occur naturally.

[1]  W. Dáttilo,et al.  Buprestid trophic guilds differ in their structural role shaping ecological networks with their host plants , 2022, Arthropod-Plant Interactions.

[2]  A. Hekkala,et al.  Can multifunctional forest landscapes sustain a high diversity of saproxylic beetles? , 2021 .

[3]  A. Sánchez-Azofeifa,et al.  Intra- and interspecific variations on plant functional traits along a successional gradient in a Brazilian tropical dry forest , 2021 .

[4]  R. Sage Global change biology: A primer , 2019, Global change biology.

[5]  K. Boege,et al.  Temporal variation in the influence of forest succession on caterpillar communities: A long‐term study in a tropical dry forest  , 2019, Biotropica.

[6]  M. Ortega-Huerta,et al.  Modelling land cover changes in the tropical dry forest surrounding the Chamela-Cuixmala biosphere reserve, Mexico , 2019, International Journal of Remote Sensing.

[7]  Uriel Jeshua Sánchez-Reyes,et al.  Successional and seasonal changes of leaf beetles and their indicator value in a fragmented low thorn forest of northeastern Mexico (Coleoptera, Chrysomelidae) , 2019, ZooKeys.

[8]  Benjamin L Turner,et al.  Ecological succession in a changing world , 2019, Journal of Ecology.

[9]  R. Paulian Biologie des Coléoptères , 2019 .

[10]  F. Escobar,et al.  Annual Abundance and Population Structure of Two Dung Beetle Species in a Human-Modified Landscape , 2018, Insects.

[11]  M. Hansen,et al.  Classifying drivers of global forest loss , 2018, Science.

[12]  S. Zaragoza-Caballero,et al.  Distribución vertical de Coleoptera (Insecta) en un bosque tropical subcaducifolio en Jalisco, México , 2018, Revista Mexicana de Biodiversidad.

[13]  N. Stork,et al.  How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? , 2018, Annual review of entomology.

[14]  Andrew M. Liebhold,et al.  Biological invasions in forest ecosystems , 2017, Biological Invasions.

[15]  G. Parker,et al.  Long-term (33 years) rainfall and runoff dynamics in a tropical dry forest ecosystem in western Mexico: Management implications under extreme hydrometeorological events , 2017, Forest Ecology and Management.

[16]  W. Ripple,et al.  Global forest loss disproportionately erodes biodiversity in intact landscapes , 2017, Nature.

[17]  S. Zaragoza-Caballero,et al.  Análisis de la diversidad de Coleoptera en el bosque tropical caducifolio en Acahuizotla, Guerrero, México , 2017 .

[18]  J. A. Cabral,et al.  Does the composition of Scarabaeidae (Coleoptera) communities reflect the extent of land use changes in the Brazilian Amazon , 2017 .

[19]  A. Chao,et al.  iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers) , 2016 .

[20]  M. L. Zurita-García,et al.  Inventario de las especies de elatéridos (Coleoptera: Elateridae) de un bosque tropical caducifolio mexicano , 2016 .

[21]  F. Neves,et al.  Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest , 2016, Journal of insect science.

[22]  N. Stork,et al.  New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods , 2015, Proceedings of the National Academy of Sciences.

[23]  R. Dirzo,et al.  Defaunation in the Anthropocene , 2014, Science.

[24]  Elizabeth L. Sander,et al.  Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies , 2014 .

[25]  C. Deloya,et al.  Scarabaeidae y Trogidae (Coleoptera) necrófilos de Acahuizotla, Guerrero, México , 2013 .

[26]  K. Boege,et al.  Resilience in Plant-Herbivore Networks during Secondary Succession , 2012, PloS one.

[27]  C. Orme,et al.  betapart: an R package for the study of beta diversity , 2012 .

[28]  J. Gamon,et al.  Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem. , 2012, American journal of botany.

[29]  Miguel A. Ortega-Huerta,et al.  Cerambícidos (Coleoptera: Cerambycidae) del bosque tropical caducifolio en Santiago Dominguillo, Oaxaca, México , 2012 .

[30]  M. Turner Disturbance and landscape dynamics in a changing world. , 2010, Ecology.

[31]  D. Herms,et al.  Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America , 2010, Biological Invasions.

[32]  M. Ortega-Huerta,et al.  A faunal study of Cerambycidae (Coleoptera) from one region with tropical dry forest in Mexico: Sierra de San Javier, Sonora , 2009 .

[33]  S. Zaragoza-Caballero,et al.  Diversidad de Cantharidae, Lampyridae, Lycidae, Phengodidae y Telegeusidae (Coleoptera: Elateroidea) en un bosque tropical caducifolio de la sierra de San Javier, Sonora, México , 2009 .

[34]  Mickaël Henry,et al.  Composition, structure and diversity of phyllostomid bat assemblages in different successional stages of a tropical dry forest , 2009 .

[35]  J. Gamon,et al.  Succession and management of tropical dry forests in the Americas: review and new perspectives. , 2009 .

[36]  M. Quesada,et al.  Land cover and conservation in the area of influence of the Chamela-Cuixmala Biosphere Reserve, Mexico , 2009 .

[37]  J. O'Brien,et al.  Ground-Dwelling Arthropod Association with Coarse Woody Debris Following Long-Term Dormant Season Prescribed Burning in the Longleaf Pine Flatwoods of North Florida , 2009 .

[38]  S. Z. Caballero,et al.  Variación temporal de la diversidad de estafilínidos (Coleoptera: Staphylinidae) nocturnos en un bosque tropical caducifolio de México , 2009 .

[39]  G. Halffter,et al.  Dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in continuous forest, forest fragments and cattle pastures in a landscape of Chiapas, Mexico: the effects of anthropogenic changes , 2008, Biodiversity and Conservation.

[40]  R. Ayala,et al.  A Faunal Study of Cerambycidae (Coleoptera) from One Region with Tropical Dry Forest in México: San Buenaventura, Jalisco , 2007 .

[41]  S. Spector,et al.  Global dung beetle response to tropical forest modification and fragmentation: A quantitative literature review and meta-analysis , 2007 .

[42]  N. Stork,et al.  Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity , 2006, Proceedings of the Royal Society B: Biological Sciences.

[43]  P. Reich,et al.  Effects of European Earthworm Invasion on Soil Characteristics in Northern Hardwood Forests of Minnesota, USA , 2005, Ecosystems.

[44]  Scott A. Lassau,et al.  Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? , 2005 .

[45]  J. Denslow,et al.  Changes in vegetation structure and composition along a tropical forest chronosequence: implications for wildlife , 2003 .

[46]  Rodolfo Dirzo,et al.  Floristic diversity of Mexican seasonally dry tropical forests , 2002, Biodiversity & Conservation.

[47]  D. Yeates,et al.  Patterns and levels of endemism in the Australian Wet Tropics rainforest: evidence from flightless insects , 2002 .

[48]  R. Ayala,et al.  Diversity of the Family Cerambycidae (Coleoptera) of the Tropical Dry Forest of Mexico, I. Sierra de Huautla, Morelos , 2002 .

[49]  Carsten Thies,et al.  CONTRIBUTION OF SMALL HABITAT FRAGMENTS TO CONSERVATION OF INSECT COMMUNITIES OF GRASSLAND–CROPLAND LANDSCAPES , 2002 .

[50]  R. Dirzo,et al.  Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico , 2000 .

[51]  R. B. Jackson,et al.  Global biodiversity scenarios for the year 2100. , 2000, Science.

[52]  E. Bernays,et al.  Host-Plant Selection by Phytophagous Insects , 1994, Contemporary Topics in Entomology.

[53]  D. Ellis Taxonomic sufficiency in pollution assessment , 1985 .

[54]  J. Doyen A Field Guide to the Beetles of North America , 1984 .

[55]  D. Edwards,et al.  How Should Beta-Diversity Inform Biodiversity Conservation? , 2016, Trends in ecology & evolution.

[56]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[57]  F. A. Noguera Biodiversidad de Cerambycidae (Coleoptera) en México , 2014 .

[58]  U. Schulz,et al.  Dung beetle communities as biological indicators of riparian forest widths in southern Brazil , 2014 .

[59]  S. Elias Overview of Fossil Beetles , 2013 .

[60]  E. Slade,et al.  Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes , 2011 .

[61]  Jonathan M. Chase,et al.  Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. , 2011, Ecology letters.

[62]  Aaron M Ellison,et al.  Partitioning diversity. , 2010, Ecology.

[63]  J. Louzada,et al.  Successional and Seasonal Changes in a Community of Dung Beetles (Coleoptera: Scarabaeinae) in a Brazilian Tropical Dry Forest , 2010 .

[64]  A. Taboada,et al.  Plant and carabid beetle species diversity in relation to forest type and structural heterogeneity , 2008, European Journal of Forest Research.

[65]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[66]  G. Halffter,et al.  Spatial and temporal analysis of α, β and γ diversities of bats in a fragmented landscape , 2004, Biodiversity & Conservation.

[67]  T. Aide,et al.  Species Diversity and Trophic Composition of Litter Insects During Plant Secondary Succession , 2003 .

[68]  T. Schowalter Insect Ecology: An Ecosystem Approach , 2000 .

[69]  F. Noguera,et al.  Annotated checklist of the Cerambycidae of the Estacion de Biologia Chamela, Jalisco, Mexico, (Coleoptera) with descriptions of new genera and species. , 1993 .

[70]  R. A. Crowson The natural classification of the families of coleoptera , 1955 .

[71]  D. Borror,et al.  An introduction to the study of insects , 1954 .