Stochastic Galerkin methods and model order reduction for linear dynamical systems

Linear dynamical systems are considered in the form of ordinary differential equations or differential algebraic equations. We change their physical parameters into random variables to represent uncertainties. A stochastic Galerkin method yields a larger linear dynamical system satisfied by an approximation of the random processes. If the original systems own a high dimensionality, then a model order reduction is required to decrease the complexity. We investigate two approaches: the system of the stochastic Galerkin scheme is reduced and, vice versa, the original systems are reduced followed by an application of the stochastic Galerkin method. The properties are analyzed in case of reductions based on moment matching with the Arnoldi algorithm. We present numerical computations for two test examples. Keywords: stochastic modeling, polynomial chaos, stochastic Galerkin method, model order reduction, quadrature, dynamical systems, uncertainty quantification

[1]  S. Tan,et al.  Stochastic extended Krylov subspace method for variational analysis of on-chip power grid networks , 2007, 2007 IEEE/ACM International Conference on Computer-Aided Design.

[2]  Michael Guenther,et al.  CAD based electric circuit modeling in industry. Part I: Mathematical structure and index of network equations. Part II: Impact of circuit configurations and parameters , 1999 .

[3]  Roland Pulch POLYNOMIAL CHAOS FOR SEMIEXPLICIT DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX 1 , 2013 .

[4]  Bernard Haasdonk,et al.  Convergence Rates of the POD–Greedy Method , 2013 .

[5]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[6]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[7]  Peter Benner,et al.  Uncertainty Quantification for Maxwell's Equations Using Stochastic Collocation and Model Order Reduction , 2013 .

[8]  Sani R. Nassif,et al.  Modeling interconnect variability using efficient parametric model order reduction , 2005, Design, Automation and Test in Europe.

[9]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[10]  Roland Pulch,et al.  POLYNOMIAL CHAOS FOR LINEAR DIFFERENTIAL ALGEBRAIC EQUATIONS WITH RANDOM PARAMETERS , 2011 .

[11]  Anthony T. Patera,et al.  A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient , 2009 .

[12]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[13]  Yici Cai,et al.  Practical Implementation of Stochastic Parameterized Model Order Reduction via Hermite Polynomial Chaos , 2007, 2007 Asia and South Pacific Design Automation Conference.

[14]  Hung Dinh Nong,et al.  Passivity Preserving Model Reduction via Interpolation of Spectral Zeros: Selection Criteria and Implementation , 2007 .

[15]  Bernhard Wieland,et al.  Reduced basis methods for partial differential equations with stochastic influences , 2013 .

[16]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[17]  Jorge Fernandez Villena,et al.  SPARE - A Scalable Algorithm for Passive, Structure Preserving, Parameter-Aware Model Order Reduction , 2010, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  Roland W. Freund,et al.  Recent Advances in Structure-Preserving Model Order Reduction , 2011 .

[19]  Luca Daniel,et al.  A Piecewise-Linear Moment-Matching Approach to Parameterized Model-Order Reduction for Highly Nonlinear Systems , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[20]  Serkan Gugercin,et al.  H2 Model Reduction for Large-Scale Linear Dynamical Systems , 2008, SIAM J. Matrix Anal. Appl..

[21]  Claude Jeffrey Gittelson,et al.  Adaptive stochastic Galerkin FEM , 2013 .

[22]  Michael Günther,et al.  CAD based electric circuit modeling in industry. Pt. 1: Mathematical structure and index of network equations , 1997 .

[23]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[24]  Albert E. Ruehli,et al.  The modified nodal approach to network analysis , 1975 .

[25]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[26]  Peter Benner,et al.  Interpolatory Projection Methods for Parameterized Model Reduction , 2011, SIAM J. Sci. Comput..

[27]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[28]  P. Rentrop,et al.  Polynomial chaos for the approximation of uncertainties: Chances and limits , 2008, European Journal of Applied Mathematics.

[29]  Jan G. Korvink,et al.  Model Order Reduction for Linear Convective Thermal Flow , 2004 .

[30]  Peter Benner,et al.  A Robust Algorithm for Parametric Model Order Reduction Based on Implicit Moment Matching , 2014 .

[31]  Claude Jeffrey Gittelson,et al.  Adaptive stochastic Galerkin FEM , 2014 .

[32]  Dongbin Xiu,et al.  Generalised Polynomial Chaos for a Class of Linear Conservation Laws , 2012, J. Sci. Comput..

[33]  H. V. D. Vorst,et al.  Model Order Reduction: Theory, Research Aspects and Applications , 2008 .

[34]  Jan ter Maten,et al.  Sensitivity analysis and model order reduction for random linear dynamical systems , 2015, Math. Comput. Simul..

[35]  T. Voss,et al.  Model order reduction for nonlinear differential algebraic equations in circuit simulation , 2008 .

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[38]  K. Stavrakakis,et al.  Model Order Reduction Methods for Parameterized Systems in Electromagnetic Field Simulations , 2012 .

[39]  Karsten Urban,et al.  Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loève Expansion , 2013, SIAM/ASA J. Uncertain. Quantification.

[40]  MARTIN DROHMANN,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATION OF EVOLUTION EQUATIONS ON PARAMETRIZED GEOMETRIES , 2008 .

[41]  Jan G. Korvink,et al.  Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[42]  Roland Pulch Modelling and simulation of autonomous oscillators with random parameters , 2011, Math. Comput. Simul..

[43]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[44]  E. Jan W. ter Maten,et al.  Model Reduction for Circuit Simulation , 2011 .