Network Underpinnings of Behavioral Travel Demand: Fractal Analysis of Boston's Transportation System

The connection between behavioral travel demand models and the geometry of the metropolitan transport network is described, followed by the consideration of fractal geometry as a means of studying a wide range of phenomena, including highway networks. Then a fractal analysis is undertaken of the classes of roads in metropolitan Boston, Massachusetts. This analysis yields one exemplary new insight into travel behavior: a phase shift between highway systems and major and local road systems indicating different trip purposes and scales for analysis.

[1]  V. Rodin,et al.  THE FRACTAL DIMENSION OF TOKYO'S STREETS , 2000 .

[2]  Piet H. L. Bovy,et al.  Modelling route choice behaviour in multi-modal transport networks , 2005 .

[3]  A. Rinaldo,et al.  Fractal River Basins: Chance and Self-Organization , 1997 .

[4]  Eric Sheppard,et al.  Quantitative Geography: Representations, Practices, and Possibilities , 2001 .

[5]  M Batty,et al.  Preliminary Evidence for a Theory of the Fractal City , 1996, Environment & planning A.

[6]  Lucien Benguigui,et al.  The fractal structure of Seoul’s public transportation system , 2003 .

[7]  Kai Nagel,et al.  Self-Organized Criticality and $1/f$ Noise in Traffic , 1995 .

[8]  Pierre Frankhauser,et al.  La fractalité des structures urbaines , 1994 .

[9]  Pierre Frankhauser L'approche fractale. Un nouvel outil de réflexion dans l'analyse spatiale des agglomérations urbaines. , 1997 .

[10]  Paczuski,et al.  Emergent traffic jams. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[12]  J. Midgley Is bigger better in plants? The hydraulic costs of increasing size in trees. , 2003 .

[13]  Richard L. Hudson,et al.  The Misbehavior of Markets: A Fractal View of Risk, Ruin, and Reward , 2004 .

[14]  Michael Batty,et al.  Self-organized criticality and urban development , 1999 .

[15]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[16]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[17]  Matthew J. Roorda,et al.  A tour-based model of travel mode choice , 2005 .

[18]  Junmei Tang,et al.  Fractal Dimension of a Transportation Network and its Relationship with Urban Growth: A Study of the Dallas-Fort Worth Area , 2004 .

[19]  M. Batty,et al.  Urban Growth and Form: Scaling, Fractal Geometry, and Diffusion-Limited Aggregation , 1989 .

[20]  Lewis F. Richardson,et al.  The Supply of Energy from and to Atmospheric Eddies , 1920 .

[21]  Oscar Castillo,et al.  Soft Computing and Fractal Theory for Intelligent Manufacturing , 2003, Studies in Fuzziness and Soft Computing.

[22]  Barbara P. Buttenfield,et al.  Multiscale mapping for the NSDI: Data modeling and representation , 1995 .

[23]  Paul S. Addison,et al.  Fractals and Chaos: An Illustrated Course , 1997 .

[24]  D. Harte Multifractals: Theory and Applications , 2001 .

[25]  Active Layer of an Oxygen Electrode Based on Nanocomposite Disperse Carbon Carrier + Laccase Material , 2004 .

[26]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[27]  J. M. Thomson,et al.  Great cities and their traffic , 1977 .

[28]  Fabrice Druaux,et al.  Multiscale Roughness Analysis of Particles: Application to the Classification of Detrital Sediments , 2003 .

[29]  E. G. Campari,et al.  Self-similarity in highway traffic , 2002 .

[30]  Pierre Frankhauser,et al.  The fractal approach. A new tool for the spatial analysis of urban agglomerations , 1998 .