The Gelfand–Graev representation of classical groups in terms of Hecke algebras

Abstract Let G be a p-adic classical group. The representations in a given Bernstein component can be viewed as modules for the corresponding Hecke algebra—the endomorphism algebra of a pro-generator of the given component. Using Heiermann’s construction of these algebras, we describe the Bernstein components of the Gelfand–Graev representation for $G=\mathrm {SO}(2n+1)$ , $\mathrm {Sp}(2n)$ , and $\mathrm {O}(2n)$ .

[1]  Manish Mishra,et al.  Principal series component of Gelfand-Graev representation , 2020, Proceedings of the American Mathematical Society.

[2]  M. Solleveld Endomorphism algebras and Hecke algebras for reductive p-adic groups , 2020, Journal of Algebra.

[3]  Gordan Savin,et al.  Iwahori component of the Gelfand–Graev representation , 2018 .

[4]  Gordan Savin,et al.  Bernstein-Zelevinsky derivatives: a Hecke algebra approach , 2017, 1702.01259.

[5]  V. Heiermann Local Langlands correspondence for classical groups and affine Hecke algebras , 2015, 1502.04357.

[6]  Akshay Venkatesh,et al.  Periods and harmonic analysis on spherical varieties , 2012, Astérisque.

[7]  S. Stevens,et al.  Smooth representations of GL_m(D) VI : semisimple types , 2010, 1009.1062.

[8]  Nir Avni,et al.  Spherical pairs over close local fields , 2009, 0910.3199.

[9]  V. Heiermann Paramètres de Langlands et Algèbres D’Entrelacement , 2009 .

[10]  Alan Roche The Bernstein decomposition and the Bernstein centre , 2009 .

[11]  V. Heiermann Opérateurs d’entrelacement et algèbres de Hecke avec paramètres d’un groupe réductif p-adique: le cas des groupes classiques , 2008, 0804.4398.

[12]  Avraham Aizenbud,et al.  Multiplicity one Theorems , 2007, 0709.4215.

[13]  S. Stevens The supercuspidal representations of p-adic classical groups , 2006, math/0607622.

[14]  G. Henniart,et al.  Generalized Whittaker models and the Bernstein center , 2003 .

[15]  CJ Bushnell,et al.  Smooth representations of reductive p‐ADIC groups: structure theory via types , 1998 .

[16]  R. Herb,et al.  Some results on the admissible representations of non-connected reductive $p$-adic groups , 1995, math/9511216.

[17]  D. Goldberg Reducibility of Induced Representations for SP(2N) and SO(N) , 1994 .

[18]  C. Bushnell,et al.  The admissible dual of GL(N) via compact open subgroups , 1993 .

[19]  George Lusztig,et al.  Affine Hecke algebras and their graded version , 1989 .

[20]  F. Shahidi On Certain L-Functions , 1981 .

[21]  K. Chan Homological branching law for ( GL n + 1 ( F ), GL n ( F )) : projectivity and indecomposability , 2021 .

[22]  Gordan Savin,et al.  A vanishing Ext-branching theorem for (GLn+1(F),GLn(F)) , 2021, Duke Mathematical Journal.

[23]  C. Mœglin,et al.  Sur les conjectures de Gross et Prasad , 2012 .