Secondary structure of the human mitochondrial genome affects formation of deletions

[1]  A. Reymond,et al.  A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand , 2022, Nucleic acids research.

[2]  A. Omer,et al.  Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia , 2022, Cell.

[3]  Elizabeth K. Schmidt,et al.  A replication-linked mutational gradient drives somatic mutation accumulation and influences germline polymorphisms and genome composition in mitochondrial DNA , 2021, Nucleic acids research.

[4]  S. Karthikeyan,et al.  An atlas of mitochondrial DNA genotype-phenotype associations in the UK Biobank , 2021, Nature Genetics.

[5]  Robert W. Taylor,et al.  Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging , 2020, Genome biology.

[6]  Alexander Y. Panchin,et al.  Coding palindromes in mitochondrial genes of Nematomorpha , 2019, Nucleic acids research.

[7]  K. Popadin,et al.  ImtRDB: a database and software for mitochondrial imperfect interspersed repeats annotation , 2019, BMC Genomics.

[8]  Robert W. Taylor,et al.  Copy-choice recombination during mitochondrial L-strand synthesis causes DNA deletions , 2019, Nature Communications.

[9]  D. Turnbull,et al.  Mitochondrial donation: from test tube to clinic , 2018, The Lancet.

[10]  C. Moraes,et al.  MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation , 2018, Nature Medicine.

[11]  Pedro Rebelo-Guiomar,et al.  Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo , 2018, Nature Medicine.

[12]  I. Tarassov,et al.  Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner , 2018, PloS one.

[13]  Alexander Sasha Rabchevsky,et al.  Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma , 2018, Neural regeneration research.

[14]  Helga Thorvaldsdóttir,et al.  Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data , 2017, bioRxiv.

[15]  Arslan A. Zaidi,et al.  A Population Phylogenetic View of Mitochondrial Heteroplasmy , 2017, Genetics.

[16]  Erez Lieberman Aiden,et al.  Genome Organization Drives Chromosome Fragility , 2017, Cell.

[17]  M. Tigano,et al.  Single-Molecule Analysis of mtDNA Replication Uncovers the Basis of the Common Deletion. , 2017, Molecular cell.

[18]  J. C. Belmonte,et al.  Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations , 2016, Nature.

[19]  J. Aiken,et al.  Latent mitochondrial DNA deletion mutations drive muscle fiber loss at old age , 2016, Aging cell.

[20]  Douglass M. Turnbull,et al.  Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease , 2016, Nature.

[21]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[22]  Anton Nekrutenko,et al.  Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA , 2014, Proceedings of the National Academy of Sciences.

[23]  K. Khrapko,et al.  When man got his mtDNA deletions? , 2014, Aging cell.

[24]  M. Minczuk,et al.  Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations , 2014, EMBO molecular medicine.

[25]  L. Mirny,et al.  High-Resolution Mapping of the Spatial Organization of a Bacterial Chromosome , 2013, Science.

[26]  João Carneiro,et al.  MitoBreak: the mitochondrial DNA breakpoints database , 2013, Nucleic Acids Res..

[27]  Jiang-Nan Yang,et al.  Mitochondrial Inverted Repeats Strongly Correlate with Lifespan: mtDNA Inversions and Aging , 2013, PloS one.

[28]  C. Moraes,et al.  Specific elimination of mutant mitochondrial genomes in patient–derived cells by mitoTALENs , 2013, Nature Medicine.

[29]  S. Poovathingal,et al.  Is mitochondrial DNA turnover slower than commonly assumed? , 2012, Biogerontology.

[30]  Rudiyanto Gunawan,et al.  Is mitochondrial DNA turnover slower than commonly assumed? , 2012, Biogerontology.

[31]  David C Samuels,et al.  Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations , 2011, Nature Genetics.

[32]  S. Dimauro,et al.  Mitochondrial DNA Deletion Syndromes , 2011 .

[33]  Y. Orlov,et al.  Repeats, longevity and the sources of mtDNA deletions: evidence from 'deletional spectra'. , 2010, Trends in genetics : TIG.

[34]  Takuya Miyakawa,et al.  Mitochondrial DNA Mutations Induce Mitochondrial Dysfunction, Apoptosis and Sarcopenia in Skeletal Muscle of Mitochondrial DNA Mutator Mice , 2010, PloS one.

[35]  Laura C. Greaves,et al.  Somatic mitochondrial DNA deletions accumulate to high levels in aging human extraocular muscles. , 2010, Investigative ophthalmology & visual science.

[36]  K. Khrapko,et al.  On the timing and the extent of clonal expansion of mtDNA deletions: Evidence from single-molecule PCR , 2009, Experimental Neurology.

[37]  K. Popadin,et al.  Nucleotide repeats in mitochondrial genome determine human lifespan , 2008 .

[38]  福家 聡,et al.  DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice , 2008 .

[39]  G. Bhanot,et al.  Mitochondrial DNA Haplogroup D4a Is a Marker for Extreme Longevity in Japan , 2008, PloS one.

[40]  T. Prolla,et al.  DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice , 2008, Nature Genetics.

[41]  K. Khrapko,et al.  Mitochondrial DNA mutations and aging: a case closed? , 2007, Nature Genetics.

[42]  T. Prolla,et al.  Mitochondrial point mutations do not limit the natural lifespan of mice , 2007, Nature Genetics.

[43]  Jeong W. Pak,et al.  Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. , 2007, The journals of gerontology. Series A, Biological sciences and medical sciences.

[44]  G. Bhanot,et al.  Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population , 2007, Human Genetics.

[45]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[46]  M. Khaidakov,et al.  Direct repeats in mitochondrial DNA and mammalian lifespan , 2006, Mechanisms of Ageing and Development.

[47]  C. Geula,et al.  Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons , 2006, Nature Genetics.

[48]  Robert W. Taylor,et al.  High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease , 2006, Nature Genetics.

[49]  P. Ho,et al.  Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes. , 2005, Molecular human reproduction.

[50]  E. Schon,et al.  Two direct repeats cause most human mtDNA deletions. , 2004, Trends in genetics : TIG.

[51]  Howard T. Jacobs,et al.  Premature ageing in mice expressing defective mitochondrial DNA polymerase , 2004, Nature.

[52]  D. Samuels Mitochondrial DNA repeats constrain the life span of mammals. , 2004, Trends in genetics : TIG.

[53]  D. Turnbull,et al.  Mitochondrial DNA deletion in “identical” twin brothers , 2004, Journal of Medical Genetics.

[54]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[55]  G. Cortopassi A neutral theory predicts multigenic aging and increased concentrations of deleterious mutations on the mitochondrial and Y chromosomes. , 2002, Free radical biology & medicine.

[56]  J. Cohen,et al.  Mitochondrial DNA rearrangements in human oocytes and embryos. , 1999, Molecular human reproduction.

[57]  S. Dimauro,et al.  A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. , 1989, Science.

[58]  A. Albertini,et al.  On the formation of spontaneous deletions: The importance of short sequence homologies in the generation of large deletions , 1982, Cell.

[59]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[60]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..