Expected performances of the NOMAD/ExoMars instrument

Abstract NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers – SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in ( Vandaele et al., 2015a , Vandaele et al., 2015b ; Thomas et al., 2016 ), the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, H2O, HDO, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, HCN, HO2, NH3, N2O, NO2, OCS, O3. NOMAD should have the ability to measure methane concentrations Drummond et al., 2011 ). Results have been obtained for all three channels in nadir and in solar occultation.

[1]  F. Daerden,et al.  A solar escalator on Mars: Self‐lifting of dust layers by radiative heating , 2015 .

[2]  Johannes Orphal,et al.  Revised ultraviolet absorption cross sections of H2CO for the HITRAN database , 2011 .

[3]  Javier Cubas,et al.  NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1--design, manufacturing and testing of the infrared channels. , 2015, Applied optics.

[4]  I R Thomas,et al.  Optical and radiometric models of the NOMAD instrument part II: the infrared channels - SO and LNO. , 2016, Optics express.

[5]  Alice Michel,et al.  SOLAR/SOLSPEC mission on ISS: In-flight performance for SSI measurements in the UV , 2017 .

[6]  Tobias Owen,et al.  Detection of methane in the martian atmosphere: evidence for life? , 2004 .

[7]  Yuk L. Yung,et al.  Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140-220 nm and Implications for Planetary Isotopic Fractionation , 2006 .

[8]  A. Vandaele,et al.  Optical extinction due to aerosols in the upper haze of Venus: Four years of SOIR/VEX observations from 2006 to 2010 , 2012 .

[9]  D. R. Rushneck,et al.  The composition of the atmosphere at the surface of Mars , 1977 .

[10]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[11]  Gordon L. Bjoraker,et al.  High‐resolution spectroscopy of Mars at 3.7 and 8 μm: A sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO , 1997 .

[12]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[13]  H. Maezawa,et al.  Search of SO2 in the Martian atmosphere by ground-based submillimeter observation , 2009 .

[14]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[15]  V. Krasnopolsky A sensitive search for SO2 in the martian atmosphere: Implications for seepage and origin of methane , 2005 .

[16]  David Bolsée,et al.  Métrologie de la spectrophotométrie solaire absolue: principes, mise en oeuvre et résultats ; Instrument SOLSPEC à bord de la station spatiale internationale , 2012 .

[17]  William C. Maguire,et al.  Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data , 1977 .

[18]  Ann Carine Vandaele,et al.  Fourier transform measurements of SO2 absorption cross sections: II.: Temperature dependence in the 29 000–44 000 cm−1 (227–345 nm) region , 2009 .

[19]  A. Vandaele,et al.  Composition of the Venus mesosphere measured by SOIR on board Venus Express , 2008 .

[20]  K. Yoshino,et al.  Absolute absorption cross section measurements of in the wavelength region 163–200 nm and the temperature dependence , 2003 .

[21]  Peter F. Bernath,et al.  The ACE-FTS atlas of the infrared solar spectrum , 2010 .

[22]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[23]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[24]  F. X. Kneizys,et al.  Air Mass Computer Program for Atmospheric Transmittance/Radiance Calculation: FSCATM , 1983 .

[25]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[26]  Mark Leese,et al.  Optical and radiometric models of the NOMAD instrument part I: the UVIS channel. , 2015, Optics express.

[27]  Franck Lefèvre,et al.  Three-dimensional modeling of ozone on Mars , 2004 .

[28]  Naohiro Yoshida,et al.  High-precision spectroscopy of 32S, 33S, and 34S sulfur dioxide : Ultraviolet absorption cross sections and isotope effects , 2008 .

[29]  A. Vandaele,et al.  Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid‐IR onboard Venus Express , 2009 .

[30]  A. Vandaele,et al.  A new method for determining the transfer function of an acousto optical tunable filter. , 2009, Optics express.

[31]  T. Encrenaz,et al.  A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy , 2013 .

[32]  W. Ubachs,et al.  Direct measurement of the Rayleigh scattering cross section in various gases , 2005 .

[33]  T. Encrenaz,et al.  A stringent upper limit to SO2 in the Martian atmosphere , 2011 .

[34]  Christopher R. Webster,et al.  Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover , 2013, Science.

[35]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[36]  Geert K. Moortgat,et al.  Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm , 2000 .

[37]  Marco Giuranna,et al.  Detection of Methane in the Atmosphere of Mars , 2004, Science.

[38]  Michael D. Smith,et al.  Strong Release of Methane on Mars in Northern Summer 2003 , 2009, Science.

[39]  Miguel de Val-Borro,et al.  Herschel/HIFI observations of Mars: First detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2 , 2010, 1007.1301.

[40]  D. Huestis,et al.  Critical Evaluation of the Photoabsorption Cross Section of CO2 from 0.125 to 201.6 nm at Room Temperature , 2010 .

[41]  J. C. McConnell,et al.  Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission , 2015 .

[42]  F. Lefévre,et al.  Global distribution of total ozone on Mars from SPICAM/MEX UV measurements , 2006 .

[43]  A. Vandaele,et al.  Fourier transform measurements of SO2 absorption cross sections: I. Temperature dependence in the 24 000-29 000 cm-1 (345-420 nm) region , 2009 .

[44]  A. Vandaele,et al.  Composition of the Venus mesosphere measured by Solar Occultation at Infrared on board Venus Express , 2008 .

[45]  Michel Kruglanski,et al.  MODELING AND RETRIEVAL OF ATMOSPHERIC SPECTRA USING ASIMUT , 2006 .

[46]  Andrew Steele,et al.  Mars methane detection and variability at Gale crater , 2015, Science.

[47]  William B. Krantz,et al.  Arctic patterned-ground ecosystems: A synthesis of field studies and models along a North American Arctic Transect , 2008 .

[48]  Stanley P. Sander,et al.  NASA Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies , 2014 .

[49]  J. Brion,et al.  Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence , 1995 .

[50]  Scott L. Murchie,et al.  Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide , 2009 .

[51]  J. Brion,et al.  Ozone UV spectroscopy I: Absorption cross-sections at room temperature , 1992 .

[52]  John P. Burrows,et al.  High spectral resolution ozone absorption cross-sections - Part 2: Temperature dependence , 2013 .

[53]  J. Brion,et al.  High-resolution laboratory absorption cross section of O3. Temperature effect , 1993 .

[54]  F. Daerden,et al.  Studying methane and other trace species in the Mars atmosphere using a SOIR instrument , 2011 .

[55]  F. Montmessin,et al.  Solar infrared occultation observations by SPICAM experiment on Mars-Express: Simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol , 2009 .

[56]  V. L. Orkin,et al.  Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 , 2015 .