A delay differential equation model on harmful algal blooms in the presence of toxic substances.

The periodic nature of blooms is the main characteristic in marine plankton ecology. Release of toxic substances by phytoplankton species or toxic phytoplankton reduce the growth of zooplankton by decreasing grazing pressure and have an important role in planktonic blooms. A simple mathematical model of phytoplankton-zooplankton systems with such characteristics is proposed and analysed. As the process of liberation of toxic substances by phytoplankton species is still not clear, we try to describe a suitable mechanism to explain the cyclic nature of bloom dynamics by using different forms of toxin liberation process. To substantiate our analytical findings numerical simulations are performed and these adequately resemble the results obtained in our field study.

[1]  F. Rey,et al.  Oceanographic conditions in the sandsfjord system, western Norway, after a bloom of the toxic prymnesiophyte Prymnesium parvum carter in August 1990 , 1992 .

[2]  Katherine Richardson,et al.  Harmful or exceptional phytoplankton blooms in the marine ecosystem , 1997 .

[3]  Peter Franks,et al.  Models of harmful algal blooms , 1997 .

[4]  Mark E. Huntley,et al.  Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurrence and significance , 1986 .

[5]  G. Hallegraeff A review of harmful algal blooms and their apparent global increase , 1993 .

[6]  A. Galston Fundamentals of Ecology , 1972, The Yale Journal of Biology and Medicine.

[7]  N. Macdonald Time lags in biological models , 1978 .

[8]  J. J. Gilbert,et al.  Variation in Herbivore Response to Chemical Defenses: Zooplankton Foraging on Toxic Cyanobacteria , 1992 .

[9]  S Mandal,et al.  Toxin-producing plankton may act as a biological control for planktonic blooms--field study and mathematical modelling. , 2002, Journal of theoretical biology.

[10]  C. Tomas Identifying marine diatoms and dinoflagellates , 1996 .

[11]  A. M. Edwards,et al.  Zooplankton mortality and the dynamical behaviour of plankton population models , 1999, Bulletin of mathematical biology.

[12]  L. Edler,et al.  29 NOVEL AND NUISANCE PHYTOPLANKTON BLOOMS IN THE SEA : EVIDENCE FOR A GLOBAL EPIDEMIC , 2022 .

[13]  T. Wyatt,et al.  Model which Generates Red Tides , 1973, Nature.

[14]  S. Uye Impact of copepod grazing on the red-tide flagellate Chattonella antiqua , 1986 .

[15]  Edward J. Buskey,et al.  Effects of the Texas (USA) \'brown tide\' alga on planktonic grazers , 1995 .

[16]  J. Burkholder,et al.  PFIESTERIA PISCICIDA GEN. ET SP. NOV. (PFIESTERIACEAE FAM. NOV.), A NEW TOXIC DINOFLAGELLATE WITH A COMPLEX LIFE CYCLE AND BEHAVIOR 1 , 1996 .

[17]  Curtis C. Travis,et al.  On the use of reducible-functional differential equations in biological models , 1982 .

[18]  Donald M. Anderson,et al.  Dynamics and physiology of saxitoxin production by the dinoflagellatesAlexandrium spp. , 1990 .

[19]  J. Nejstgaard,et al.  Repression of copepod feeding and fecundity by the toxic haptophyte Prymnesium patelliferum , 1996 .

[20]  Engel G. Vrieling,et al.  TOXIC PHYTOPLANKTON BLOOMS IN THE SEA , 1993 .

[21]  C. S. Holling,et al.  Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest , 1978 .

[22]  John Brindley,et al.  Ocean plankton populations as excitable media , 1994 .

[23]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[24]  Torkel Gissel Nielsen,et al.  Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community , 1990 .

[25]  Jim M Cushing,et al.  Integrodifferential Equations and Delay Models in Population Dynamics , 1977 .

[26]  J. Ives,et al.  Possible mechanisms underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates , 1987 .

[27]  Jane Lewis,et al.  Identifying marine diatoms and dinoflagellates , 1997 .

[28]  L. Segel,et al.  Hypothesis for origin of planktonic patchiness , 1976, Nature.

[29]  E. Odum Fundamentals of ecology , 1972 .

[30]  H. I. Freedman,et al.  The trade-off between mutual interference and time lags in predator-prey systems , 1983 .

[31]  T. Thingstad,et al.  Dynamics of chemostat culture:the effect of a delay in cell response. , 1974, Journal of theoretical biology.

[32]  Jens C. Nejstgaard,et al.  Predation by copepods upon natural populations of Phaeocystis pouchetii as a function of the physiological state of the prey , 1990 .

[33]  R. Newell,et al.  Marine plankton,: A practical guide , 1963 .

[34]  Gail S. K. Wolkowicz,et al.  Competition in the Chemostat: A Distributed Delay Model and Its Global Asymptotic Behavior , 1997, SIAM J. Appl. Math..