Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration

[1]  B. Ghetti,et al.  Classification of diseases with accumulation of Tau protein , 2022, Neuropathology and Applied Neurobiology.

[2]  D. Westaway,et al.  Distinct populations of highly potent TAU seed conformers in rapidly progressing Alzheimer’s disease , 2022, Science Translational Medicine.

[3]  J. Soucy,et al.  18F-MK-6240 tau-PET in genetic frontotemporal dementia , 2021, Brain : a journal of neurology.

[4]  Cellular and pathological heterogeneity of primary tauopathies , 2021, Molecular neurodegeneration.

[5]  W. M. van der Flier,et al.  [18F]Flortaucipir PET Across Various MAPT Mutations in Presymptomatic and Symptomatic Carriers , 2021, Neurology.

[6]  J. Rowe,et al.  Characterizing the Clinical Features and Atrophy Patterns of MAPT-Related Frontotemporal Dementia With Disease Progression Modeling , 2021, Neurology.

[7]  A. Murzin,et al.  Structure-based classification of tauopathies , 2021, Nature.

[8]  K. Satoh,et al.  The Latest Research on RT-QuIC Assays—A Literature Review , 2021, Pathogens.

[9]  J. Trojanowski,et al.  Frontotemporal lobar degeneration proteinopathies have disparate microscopic patterns of white and grey matter pathology , 2021, Acta neuropathologica communications.

[10]  M. Bocchetta,et al.  Early anterior cingulate involvement is seen in presymptomatic MAPT P301L mutation carriers , 2021, Alzheimer's research & therapy.

[11]  G. Frisoni,et al.  Subtype and stage inference identifies distinct atrophy patterns in genetic frontotemporal dementia that MAP onto specific MAPT mutations , 2020 .

[12]  D. Geschwind,et al.  Brain volumetric deficits in MAPT mutation carriers: a multisite study , 2020, Annals of clinical and translational neurology.

[13]  Christoph N Schlaffner,et al.  Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease , 2020, Cell.

[14]  Anthony J. Spychalla,et al.  Longitudinal anatomic, functional, and molecular characterization of Pick disease phenotypes , 2020, Neurology.

[15]  M. Goedert,et al.  Cryo-EM structures of tau filaments. , 2020, Current opinion in structural biology.

[16]  John L. Robinson,et al.  Distribution patterns of tau pathology in progressive supranuclear palsy , 2020, Acta Neuropathologica.

[17]  A. Brickman,et al.  Structural Brain Changes in Pre-Clinical FTD MAPT Mutation Carriers. , 2020, Journal of Alzheimer's disease : JAD.

[18]  G. Kovacs Astroglia and Tau: New Perspectives , 2020, Frontiers in Aging Neuroscience.

[19]  B. Ghetti,et al.  A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases , 2020, Acta Neuropathologica Communications.

[20]  A. Murzin,et al.  Novel tau filament fold in corticobasal degeneration , 2020, Nature.

[21]  T. Wisniewski,et al.  RT-QuIC detection of tauopathies using full-length tau substrates , 2020, Prion.

[22]  D. Geschwind,et al.  Preferential tau aggregation in von Economo neurons and fork cells in frontotemporal lobar degeneration with specific MAPT variants , 2019, Acta Neuropathologica Communications.

[23]  D. Galasko,et al.  4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration , 2019, Acta Neuropathologica.

[24]  M. Murray,et al.  Neuropathologic basis of frontotemporal dementia in progressive supranuclear palsy , 2019, Movement disorders : official journal of the Movement Disorder Society.

[25]  J. Trojanowski,et al.  Empiric Methods to Account for Pre-analytical Variability in Digital Histopathology in Frontotemporal Lobar Degeneration , 2019, Front. Neurosci..

[26]  J. Kril,et al.  Cellular and regional vulnerability in frontotemporal tauopathies , 2019, Acta Neuropathologica.

[27]  J. Rohrer,et al.  An update on genetic frontotemporal dementia , 2019, Journal of Neurology.

[28]  Jesse A. Brown,et al.  Neuropathological correlates of structural and functional imaging biomarkers in 4-repeat tauopathies. , 2019, Brain : a journal of neurology.

[29]  J. Trojanowski,et al.  Divergent patterns of TDP‐43 and tau pathologies in primary progressive aphasia , 2019, Annals of neurology.

[30]  Alexey G. Murzin,et al.  Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules , 2019, Nature.

[31]  T. Golde,et al.  MAPT mutations, tauopathy, and mechanisms of neurodegeneration , 2019, Laboratory Investigation.

[32]  Maria Luisa Gorno-Tempini,et al.  18F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes , 2019, Alzheimer's Research & Therapy.

[33]  David T. Jones,et al.  Rates of lobar atrophy in asymptomatic MAPT mutation carriers , 2019, Alzheimer's & Dementia.

[34]  A. Murzin,et al.  Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold , 2018, bioRxiv.

[35]  Alexey G. Murzin,et al.  Structures of filaments from Pick’s disease reveal a novel tau protein fold , 2018, Nature.

[36]  David T. Jones,et al.  In vivo 18F-AV-1451 tau PET signal in MAPT mutation carriers varies by expected tau isoforms , 2018, Neurology.

[37]  S. Ourselin,et al.  Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study , 2018, Neurobiology of Aging.

[38]  J. Hodges,et al.  Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies , 2017, Brain : a journal of neurology.

[39]  J. Trojanowski,et al.  Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. , 2018, Brain : a journal of neurology.

[40]  J. Molinuevo,et al.  Frontotemporal Dementia Caused by the P301L Mutation in the MAPT Gene: Clinicopathological Features of 13 Cases from the Same Geographical Origin in Barcelona, Spain , 2017, Dementia and Geriatric Cognitive Disorders.

[41]  D. Eisenberg,et al.  Propagation of Tau Aggregates and Neurodegeneration. , 2017, Annual review of neuroscience.

[42]  M. Dorschner,et al.  Intrafamilial variable phenotype including corticobasal syndrome in a family with p.P301L mutation in the MAPT gene: first report in South America , 2017, Neurobiology of Aging.

[43]  R. Petersen,et al.  Clinicopathologic heterogeneity in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP‐17) due to microtubule‐associated protein tau (MAPT) p.P301L mutation, including a patient with globular glial tauopathy , 2017, Neuropathology and applied neurobiology.

[44]  A. Murzin,et al.  Cryo-EM structures of Tau filaments from Alzheimer’s disease brain , 2017, Nature.

[45]  O. Hansson,et al.  18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers , 2016, Brain : a journal of neurology.

[46]  I. Mackenzie,et al.  Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies , 2016, Journal of neurochemistry.

[47]  J. Trojanowski,et al.  Deep clinical and neuropathological phenotyping of Pick disease , 2016, Annals of neurology.

[48]  J. Trojanowski,et al.  Semi-Automated Digital Image Analysis of Pick’s Disease and TDP-43 Proteinopathy , 2016, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[49]  D. Irwin Tauopathies as clinicopathological entities. , 2016, Parkinsonism & Related Disorders.

[50]  E. Mandelkow,et al.  Tau in physiology and pathology , 2015, Nature Reviews Neuroscience.

[51]  C. Jack,et al.  Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial magnetic resonance images , 2015, European journal of neurology.

[52]  G. Kovacs,et al.  Invited review: Neuropathology of tauopathies: principles and practice , 2015, Neuropathology and applied neurobiology.

[53]  Keith A. Johnson,et al.  Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging , 2015, Neuropathology and applied neurobiology.

[54]  Thomas Wisniewski,et al.  Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy , 2015, Acta Neuropathologica.

[55]  Murray Grossman,et al.  A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank , 2014, Alzheimer's & Dementia.

[56]  Isidre Ferrer,et al.  Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. , 2014, Journal of neuropathology and experimental neurology.

[57]  J. Trojanowski,et al.  Acetylated tau neuropathology in sporadic and hereditary tauopathies. , 2013, The American journal of pathology.

[58]  Michel Goedert,et al.  Tau pathology and neurodegeneration , 2013, The Lancet Neurology.

[59]  J. Parisi,et al.  Autopsy-proven progressive supranuclear palsy presenting as behavioral variant frontotemporal dementia , 2012, Neurocase.

[60]  N. Cairns,et al.  Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurodegenerative disease: a comparative study of eight disorders , 2012, Journal of Neural Transmission.

[61]  H. Nagaraja,et al.  Tau Isoform Composition Influences Rate and Extent of Filament Formation* , 2012, The Journal of Biological Chemistry.

[62]  C. Jack,et al.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics , 2012, Brain : a journal of neurology.

[63]  Nick C. Fox,et al.  Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration , 2011, Brain : a journal of neurology.

[64]  Dennis W. Dickson,et al.  Neuropathology of Frontotemporal Lobar Degeneration-Tau (FTLD-Tau) , 2011, Journal of Molecular Neuroscience.

[65]  J. Trojanowski,et al.  A harmonized classification system for FTLD-TDP pathology , 2011, Acta Neuropathologica.

[66]  Charles Duyckaerts,et al.  National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach , 2011, Acta Neuropathologica.

[67]  T. Goldberg,et al.  MAPT isoforms: differential transcriptional profiles related to 3R and 4R splice variants. , 2011, Journal of Alzheimer's disease : JAD.

[68]  C R Jack,et al.  Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN , 2009, Neurology.

[69]  H. Akiyama,et al.  Clinicopathological characterization of Pick’s disease versus frontotemporal lobar degeneration with ubiquitin/TDP-43-positive inclusions , 2009, Acta Neuropathologica.

[70]  G. Waldemar,et al.  Alzheimer disease‐like clinical phenotype in a family with FTDP‐17 caused by a MAPT R406W mutation , 2008, European journal of neurology.

[71]  W. Kamphorst,et al.  The &Dgr;K280 Mutation in MAP tau Favors Exon 10 Skipping In Vivo , 2007 .

[72]  W. Kamphorst,et al.  The DeltaK280 mutation in MAP tau favors exon 10 skipping in vivo. , 2007, Journal of neuropathology and experimental neurology.

[73]  J. Trojanowski,et al.  Biochemical and pathological characterization of frontotemporal dementia due to a Leu266Val mutation in microtubule-associated protein tau in an African American individual , 2007, Acta Neuropathologica.

[74]  D. Dickson,et al.  An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies , 2006, Acta Neuropathologica.

[75]  W. Kamphorst,et al.  Hereditary Pick's disease with the G272V tau mutation shows predominant three-repeat tau pathology. , 2005, Brain : a journal of neurology.

[76]  Nick C Fox,et al.  Magnetic resonance imaging signatures of tissue pathology in frontotemporal dementia. , 2005, Archives of neurology.

[77]  W. Kamphorst,et al.  Variable phenotypic expression and extensive tau pathology in two families with the novel tau mutation L315R , 2003, Annals of neurology.

[78]  M. Mesulam,et al.  The L266V tau mutation is associated with frontotemporal dementia and Pick-like 3R and 4R tauopathy , 2003, Acta Neuropathologica.

[79]  R. Armstrong,et al.  Quantifying the pathology of neurodegenerative disorders: quantitative measurements, sampling strategies and data analysis , 2003, Histopathology.

[80]  M. Hasegawa,et al.  A novel L266V mutation of the tau gene causes frontotemporal dementia with a unique tau pathology , 2003, Annals of neurology.

[81]  W. Kamphorst,et al.  A novel tau mutation, S320F, causes a tauopathy with inclusions similar to those in Pick's disease , 2002, Annals of neurology.

[82]  J. Trojanowski,et al.  The fluorescent Congo red derivative, (trans, trans)-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (BSB), labels diverse beta-pleated sheet structures in postmortem human neurodegenerative disease brains. , 2001, The American journal of pathology.

[83]  B. Ghetti,et al.  Progress in Hereditary Tauopathies: A Mutation in the Tau Gene (G389R) Causes a Pick Disease‐like Syndrome , 2000, Annals of the New York Academy of Sciences.

[84]  Olivier Rascol,et al.  A mutation at codon 279 (N279K) in exon 10 of the Tau gene causes a tauopathy with dementia and supranuclear palsy , 1999, Acta Neuropathologica.

[85]  R A Crowther,et al.  Tau pathology in a family with dementia and a P301L mutation in tau. , 1999, Journal of neuropathology and experimental neurology.

[86]  A Klug,et al.  Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[88]  G. Schellenberg,et al.  Tau is a candidate gene for chromosome 17 frontotemporal dementia , 1998, Annals of neurology.