Theoretical and practical fundamentals for multi-objective optimisation in resource-constrained project scheduling problems

Project scheduling is an inherently multi-objective problem, since managers want to finish projects as soon as possible with the minimum cost and the maximum quality. However, there are only a few papers dealing with multiobjective resource-constrained project scheduling problems (MORCPSPs). Moreover, there is no theoretical study in the literature that establishes the fundamentals for correct algorithmic developments. In this paper we try to close the gap by proving several results for MORCPSPs. With these results as a basis, both exact and heuristic procedures capable of obtaining a set of efficient solutions for several important MORCPSPs can be created. We develop algorithms for the case where all objective functions are of the same type, called regular. In this case, specific codifications, techniques, and procedures can be used. Extensive computational results help decide which algorithms or techniques are the most promising for the problem. With the aid of these algorithms we study the Pareto fronts in this case. Finally, we apply a metaheuristic algorithm to a particular example of the general case in order to analyse the differences in the Pareto fronts. The project instances and Pareto fronts obtained can be downloaded from a website to facilitate comparisons with future research efforts.

[1]  Sacramento Quintanilla,et al.  Due Dates and RCPSP , 2006 .

[2]  Vinícius Amaral Armentano,et al.  Scatter search for project scheduling with resource availability cost , 2006, Eur. J. Oper. Res..

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[5]  Roman Słowiński,et al.  Advances in project scheduling , 1989 .

[6]  Maciej Hapke,et al.  Scheduling under Fuzziness , 2000 .

[7]  Shahram Shadrokh,et al.  A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty , 2007, Eur. J. Oper. Res..

[8]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[9]  Hussein A. Abbass,et al.  Performance analysis of evolutionary multi-objective optimization methods in noisy environments , 2004 .

[10]  Jan Węglarz,et al.  Project scheduling : recent models, algorithms, and applications , 1999 .

[11]  R. Słowiński Multiobjective network scheduling with efficient use of renewable and nonrenewable resources , 1981 .

[12]  Gündüz Ulusoy,et al.  A survey on the resource-constrained project scheduling problem , 1995 .

[13]  Roman Słowiński,et al.  DSS for multiobjective project scheduling , 1994 .

[14]  A. Mood,et al.  The statistical sign test. , 1946, Journal of the American Statistical Association.

[15]  M. Ehrgott Approximation algorithms for combinatorial multicriteria optimization problems , 2000 .

[16]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[17]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[18]  Jan Węglarz,et al.  Knowledge-based Multiobjective Project Scheduling Problems , 1999 .

[19]  Francisco Ballestín,et al.  Justification and RCPSP: A technique that pays , 2005, Eur. J. Oper. Res..

[20]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[21]  Paolo Serafini,et al.  Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .

[22]  Rainer Kolisch,et al.  Characterization and generation of a general class of resource-constrained project scheduling problems , 1995 .

[23]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[24]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[25]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[26]  R. Suresh,et al.  Pareto archived simulated annealing for job shop scheduling with multiple objectives , 2006 .

[27]  Chung-Hsing Yeh,et al.  A Metaheuristic Approach to Fuzzy Project Scheduling , 2003, KES.

[28]  A. Smilde,et al.  Multicriteria decision making , 1992 .

[29]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[30]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[31]  Shahram Shadrokh,et al.  Bi-objective resource-constrained project scheduling with robustness and makespan criteria , 2006, Appl. Math. Comput..

[32]  Jorge Pinho de Sousa,et al.  Using metaheuristics in multiobjective resource constrained project scheduling , 2000, Eur. J. Oper. Res..

[33]  Serpil Sayin,et al.  Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming , 2000, Math. Program..

[34]  Rainer Kolisch,et al.  Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem , 2000, Eur. J. Oper. Res..

[35]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[36]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[37]  Mohamed Haouari,et al.  A bi-objective model for robust resource-constrained project scheduling , 2005 .

[38]  Andrzej Jaszkiewicz,et al.  Interactive analysis of multiple-criteria project scheduling problems , 1998, Eur. J. Oper. Res..

[39]  Rema Padman,et al.  An integrated survey of deterministic project scheduling , 2001 .

[40]  Joanna Józefowska,et al.  Perspectives in modern project scheduling , 2006 .

[41]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[42]  Professor Dr. Klaus Neumann,et al.  Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.

[43]  Simon French,et al.  Multiple Criteria Decision Making: Theory and Application , 1981 .

[44]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[45]  Andreas Drexl,et al.  Scheduling of Project Networks by Job Assignment , 1991 .

[46]  Sönke Hartmann,et al.  A competitive genetic algorithm for resource-constrained project scheduling , 1998 .

[47]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[48]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[49]  Sönke Hartmann,et al.  A self‐adapting genetic algorithm for project scheduling under resource constraints , 2002 .

[50]  V. A. ev,et al.  Complexity of vector optimization problems on graphs , 1991 .

[51]  R. Fisher Statistical methods for research workers , 1927, Protoplasma.

[52]  J. Nabrzyski,et al.  On an expert system with tabu search for multiobjective project scheduling , 1995, Proceedings 1995 INRIA/IEEE Symposium on Emerging Technologies and Factory Automation. ETFA'95.