Theoretical and practical fundamentals for multi-objective optimisation in resource-constrained project scheduling problems
暂无分享,去创建一个
[1] Sacramento Quintanilla,et al. Due Dates and RCPSP , 2006 .
[2] Vinícius Amaral Armentano,et al. Scatter search for project scheduling with resource availability cost , 2006, Eur. J. Oper. Res..
[3] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[4] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[5] Roman Słowiński,et al. Advances in project scheduling , 1989 .
[6] Maciej Hapke,et al. Scheduling under Fuzziness , 2000 .
[7] Shahram Shadrokh,et al. A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty , 2007, Eur. J. Oper. Res..
[8] Erik Demeulemeester,et al. Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..
[9] Hussein A. Abbass,et al. Performance analysis of evolutionary multi-objective optimization methods in noisy environments , 2004 .
[10] Jan Węglarz,et al. Project scheduling : recent models, algorithms, and applications , 1999 .
[11] R. Słowiński. Multiobjective network scheduling with efficient use of renewable and nonrenewable resources , 1981 .
[12] Gündüz Ulusoy,et al. A survey on the resource-constrained project scheduling problem , 1995 .
[13] Roman Słowiński,et al. DSS for multiobjective project scheduling , 1994 .
[14] A. Mood,et al. The statistical sign test. , 1946, Journal of the American Statistical Association.
[15] M. Ehrgott. Approximation algorithms for combinatorial multicriteria optimization problems , 2000 .
[16] Rolf H. Möhring,et al. Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..
[17] Kalyanmoy Deb,et al. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.
[18] Jan Węglarz,et al. Knowledge-based Multiobjective Project Scheduling Problems , 1999 .
[19] Francisco Ballestín,et al. Justification and RCPSP: A technique that pays , 2005, Eur. J. Oper. Res..
[20] Gary B. Lamont,et al. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .
[21] Paolo Serafini,et al. Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .
[22] Rainer Kolisch,et al. Characterization and generation of a general class of resource-constrained project scheduling problems , 1995 .
[23] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[24] Leslie G. Valiant,et al. NP is as easy as detecting unique solutions , 1985, STOC '85.
[25] Pierre Hansen,et al. Bicriterion Path Problems , 1980 .
[26] R. Suresh,et al. Pareto archived simulated annealing for job shop scheduling with multiple objectives , 2006 .
[27] Chung-Hsing Yeh,et al. A Metaheuristic Approach to Fuzzy Project Scheduling , 2003, KES.
[28] A. Smilde,et al. Multicriteria decision making , 1992 .
[29] Mark Fleischer,et al. The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .
[30] Lothar Thiele,et al. Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.
[31] Shahram Shadrokh,et al. Bi-objective resource-constrained project scheduling with robustness and makespan criteria , 2006, Appl. Math. Comput..
[32] Jorge Pinho de Sousa,et al. Using metaheuristics in multiobjective resource constrained project scheduling , 2000, Eur. J. Oper. Res..
[33] Serpil Sayin,et al. Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming , 2000, Math. Program..
[34] Rainer Kolisch,et al. Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem , 2000, Eur. J. Oper. Res..
[35] Piotr Czyzżak,et al. Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .
[36] Eckart Zitzler,et al. Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .
[37] Mohamed Haouari,et al. A bi-objective model for robust resource-constrained project scheduling , 2005 .
[38] Andrzej Jaszkiewicz,et al. Interactive analysis of multiple-criteria project scheduling problems , 1998, Eur. J. Oper. Res..
[39] Rema Padman,et al. An integrated survey of deterministic project scheduling , 2001 .
[40] Joanna Józefowska,et al. Perspectives in modern project scheduling , 2006 .
[41] Rainer Kolisch,et al. Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..
[42] Professor Dr. Klaus Neumann,et al. Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.
[43] Simon French,et al. Multiple Criteria Decision Making: Theory and Application , 1981 .
[44] Xin Yao,et al. Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.
[45] Andreas Drexl,et al. Scheduling of Project Networks by Job Assignment , 1991 .
[46] Sönke Hartmann,et al. A competitive genetic algorithm for resource-constrained project scheduling , 1998 .
[47] Erik Demeulemeester,et al. Project scheduling : a research handbook , 2002 .
[48] X. Gandibleux,et al. Approximative solution methods for multiobjective combinatorial optimization , 2004 .
[49] Sönke Hartmann,et al. A self‐adapting genetic algorithm for project scheduling under resource constraints , 2002 .
[50] V. A. ev,et al. Complexity of vector optimization problems on graphs , 1991 .
[51] R. Fisher. Statistical methods for research workers , 1927, Protoplasma.
[52] J. Nabrzyski,et al. On an expert system with tabu search for multiobjective project scheduling , 1995, Proceedings 1995 INRIA/IEEE Symposium on Emerging Technologies and Factory Automation. ETFA'95.