On Information Rates of the Fading Wyner Cellular Model via the Thouless Formula for the Strip

In this paper, we apply the theory of random Schrödinger operators to the analysis of multiusers communication channels similar to the Wyner model, which are characterized by short-range intercell interference. With H the channel transfer matrix, HHf is a narrow band matrix, a fact that does not permit the use of classical random matrices theory. On the other hand, HHf is in many aspects similar to a random Schrödinger operator. We relate the per-cell sum-rate capacity of the channel to the integrated density of states of a random Schrödinger operator; the latter is then related to the top Lyapunov exponent of a random sequence of matrices via a version of the Thouless formula. We also derive several bounds on the limiting per-cell sum-rate capacity, some based on the theory of random Schrödinger operators, and some derived from information theoretical considerations. Finally, we get explicit results in the high-signal-to-noise ratio (SNR) regime for some particular cases.

[1]  Shlomo Shamai,et al.  Shannon-theoretic approach to a Gaussian cellular multiple-access channel with fading , 2000, IEEE Trans. Inf. Theory.

[2]  Antonia Maria Tulino,et al.  Capacity-achieving input covariance for single-user multi-antenna channels , 2006, IEEE Transactions on Wireless Communications.

[3]  Antonia Maria Tulino,et al.  High-SNR power offset in multiantenna communication , 2005, IEEE Transactions on Information Theory.

[4]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[5]  Aaron D. Wyner,et al.  Shannon-theoretic approach to a Gaussian cellular multiple-access channel , 1994, IEEE Trans. Inf. Theory.

[6]  Barry Simon,et al.  Subharmonicity of the Lyaponov index , 1983 .

[7]  P. Whiting,et al.  Information-theoretic capacity of multi-receiver networks , 1993, Telecommun. Syst..

[8]  Honglin Hu,et al.  Distributed Antenna Systems: Open Architecture for Future Wireless Communications , 2007 .

[9]  F. Ledrappier Quelques proprietes des exposants caracteristiques , 1984 .

[10]  Barry Simon,et al.  Log hölder continuity of the integrated density of states for stochastic Jacobi matrices , 1983 .

[11]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[12]  Robert M. Gray,et al.  On the asymptotic eigenvalue distribution of Toeplitz matrices , 1972, IEEE Trans. Inf. Theory.

[13]  B. Lautrup,et al.  Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Shlomo Shamai,et al.  Information rates for a discrete-time Gaussian channel with intersymbol interference and stationary inputs , 1991, IEEE Trans. Inf. Theory.

[15]  Shlomo Shamai,et al.  On information rates of the fading Wyner cellular model via the thouless formula for the strip , 2008 .

[16]  Aradhana Narula Information theoretic analysis of multiple-antenna transmission diversity , 1997 .

[17]  R. Tennant Algebra , 1941, Nature.

[18]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[19]  Alexander Figotin,et al.  Spectra of Random and Almost-Periodic Operators , 1991 .

[20]  Shlomo Shamai,et al.  On Certain Large Random Hermitian Jacobi Matrices With Applications to Wireless Communications , 2009, IEEE Trans. Inf. Theory.

[21]  École d'été de probabilités de Saint-Flour,et al.  École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .

[22]  P. Bougerol,et al.  Products of Random Matrices with Applications to Schrödinger Operators , 1985 .

[23]  Shlomo Shamai,et al.  An information theoretic view of distributed antenna processing in cellular systems , 2007 .

[24]  Shlomo Shamai,et al.  Central limit theorem and large deviations of the fading Wyner cellular model via product of random matrices theory , 2009, Probl. Inf. Transm..

[25]  Hubert Hennion Loi des grands nombres et perturbations pour des produits réductibles de matrices aléatoires indépendantes , 1984 .