Experimental and ab initio theoretical vibrational Raman optical activity of tartaric acid

[1]  Alan Cooper,et al.  Vibrational Raman optical activity of proteins , 1993, Other Conferences.

[2]  D. Che,et al.  Isolation of Raman optical activity invariants , 1992 .

[3]  D. Che,et al.  Dual and incident circular polarization Raman optical activity backscattering of (—)-trans-pinane , 1991 .

[4]  R. C. Reeder,et al.  Characterization of Holographic Band-Reject Filters Designed for Raman Spectroscopy , 1991 .

[5]  L. Hecht,et al.  Theory of natural Raman optical activity , 1991 .

[6]  P. Polavarapu Sum rules for Cartesian polarizability derivative tensors , 1990 .

[7]  Prasad L. Polavarapu,et al.  Ab initio vibrational Raman and Raman optical activity spectra , 1990 .

[8]  Michael M. Carrabba,et al.  The Utilization of a Holographic Bragg Diffraction Filter for Rayleigh Line Rejection in Raman Spectroscopy , 1990 .

[9]  L. Barron,et al.  Vibrational Raman optical activity in forward scattering: Trans‐pinane and β‐pinene , 1990 .

[10]  R. Nyquist Infrared Study of Maleic Anhydride in Solvent Systems , 1990 .

[11]  P. K. Bose,et al.  Ab initio and experimental Raman optical activity in (+)-(R)-methyloxirane , 1990 .

[12]  P. K. Bose,et al.  Vibrational optical activity in trans-2,3-dimethyloxirane , 1990 .

[13]  L. Barron,et al.  Backscattered Raman optical activity with a CCD detector , 1989 .

[14]  L. Barron,et al.  Vibrational Raman optical activity in backscattering , 1989 .

[15]  P. K. Bose,et al.  Ab initio and experimental vibrational Raman optical activity in (+)-(R)-methylthiirane , 1989 .

[16]  H. D. Bist,et al.  Laser Raman and infrared spectra of tartaric acid crystals , 1989 .

[17]  L. Barron,et al.  A new multichannel Raman optical activity instrument , 1987 .

[18]  L. Nafie,et al.  Enhanced vibrational circular dichroism via vibrationally generated electronic ring currents , 1985 .

[19]  R. Amos Electric and magnetic properties of CO, HF, HCI, and CH3F , 1982 .

[20]  M. Hasan Carbon-13 NMR and conformational analysis of meso- and dl-α,α′-disubstituted succinic acids , 1980 .

[21]  V. Gil,et al.  The conformations of tartaric acids in aqueous solution studied by 1H and 13C nuclear magnetic resonance , 1980 .

[22]  T. Keiderling,et al.  Conformation of dimethyl tartrate in solution. Vibrational circular dichroism results , 1980 .

[23]  T. R. Faulkner,et al.  Infrared circular dichroism associated with the hydroxyl-stretching vibration in the methyl ester of mandelic acid , 1978 .

[24]  L. Barron Raman optical activity of tartaric acid and related molecules , 1978 .

[25]  P. Stephens,et al.  Vibrational circular dichroism of dimethyl tartrate. A coupled oscillator , 1977 .

[26]  T. R. Faulkner,et al.  Infrared circular dichroism associated with the C-H strecthing vibration of tartaric acid , 1976 .

[27]  J. Scherer,et al.  RAMAN CIRCULAR INTENSITY DIFFERENTIAL SPECTROSCOPY, THE SPECTRA OF (-)-ALPHA-PINENE AND (+)-ALPHA-PHENYLETHYLAMINE , 1975 .

[28]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[29]  L. Barron Symmetry rules for the differential Raman scattering of circularly polarized light by optically active molecules , 1971 .

[30]  Laurence D. Barron,et al.  Rayleigh and Raman scattering from optically active molecules , 1971 .

[31]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .