Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry

[1]  Karam Sab,et al.  Periodization of random media and representative volume element size for linear composites , 2005 .

[2]  P.J.M. Janssen Modelling fat microstructure using finite element analysis , 2004 .

[3]  P. Cloetens,et al.  X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems , 2003 .

[4]  Tarek I. Zohdi,et al.  Constrained inverse formulations in random material design , 2003 .

[5]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[6]  Frédéric Feyel,et al.  Some elements of microstructural mechanics , 2003 .

[7]  T. Zohdi Computational optimization of the vortex manufacturing of advanced materials , 2001 .

[8]  Peter Wriggers,et al.  A method of substructuring large-scale computational micromechanical problems , 2001 .

[9]  Peter Wriggers,et al.  Aspects of the computational testing of the mechanical properties of microheterogeneous material samples , 2001 .

[10]  N. Kikuchi,et al.  Simulation of the multi-scale convergence in computational homogenization approaches , 2000 .

[11]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[12]  Martin Ostoja-Starzewski,et al.  Random field models of heterogeneous materials , 1998 .

[13]  Siegfried Schmauder,et al.  SIMULATION OF INTERPENETRATING MICROSTRUCTURES BY SELF CONSISTENT MATRICITY MODELS , 1998 .

[14]  Siegfried Schmauder,et al.  3D-finite-element-modelling of microstructures with the method of multiphase elements , 1997 .

[15]  Pierre M. Adler,et al.  The effective mechanical properties of random porous media , 1996 .

[16]  Edward J. Garboczi,et al.  An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios , 1995 .

[17]  Teubner,et al.  Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  J. T. Fredrich,et al.  Imaging the Pore Structure of Geomaterials , 1995, Science.

[19]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[20]  Keith W. Jones,et al.  Synchrotron computed microtomography of porous media: Topology and transports. , 1994, Physical review letters.

[21]  Nicos Martys,et al.  Transport and diffusion in three-dimensional composite media , 1994 .

[22]  D. Jeulin,et al.  Size effect on elastic properties of random composites , 1994 .

[23]  M. Sahimi Flow phenomena in rocks : from continuum models to fractals, percolation, cellular automata, and simulated annealing , 1993 .

[24]  Pierre M. Adler,et al.  The formation factor of reconstructed porous media , 1992 .

[25]  Salvatore Torquato,et al.  Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .

[26]  I. F. Macdonald,et al.  Three‐dimensional reconstruction of porous media from serial section data , 1990 .

[27]  Kumar,et al.  Simulation of the dielectric constant of a composite material. , 1990, Physical review. B, Condensed matter.

[28]  Pierre M. Adler,et al.  Flow in simulated porous media , 1990 .

[29]  B. Flannery,et al.  Three-Dimensional X-ray Microtomography , 1987, Science.

[30]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[31]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[32]  S. Torquato Random Heterogeneous Materials , 2002 .

[33]  V Varvara Kouznetsova,et al.  Computational homogenization for the multi-scale analysis of multi-phase materials , 2002 .

[34]  D. Jeulin,et al.  Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model , 2001 .

[35]  Dominique Jeulin,et al.  Mechanics of Random and Multiscale Microstructures , 2001, International Centre for Mechanical Sciences.

[36]  S. Schmauder,et al.  Modelling the deformation behaviour of W/Cu composites by a self-consistent matricity model , 1999 .

[37]  A. Elvin Number of grains required to homogenize elastic properties of polycrystalline ice , 1996 .

[38]  K. Sab On the homogenization and the simulation of random materials , 1992 .

[39]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[40]  E. Sanchez-Palencia,et al.  Homogenization Techniques for Composite Media , 1987 .

[41]  M. Shahinpoor MECANIQUE NON LINEAIRE DE L'EQUILIBRE GRAVITATIONNEL DES MATERIAUX GRANULAIRES , 1981 .