Strain Regulation via Pseudo Halide‐Based Ionic Liquid toward Efficient and Stable α‐FAPbI3 Inverted Perovskite Solar Cells

[1]  Yongsheng Chen,et al.  Highly Efficient and Stable FA‐Based Quasi‐2D Ruddlesden–Popper Perovskite Solar Cells by the Incorporation of β‐Fluorophenylethanamine Cations , 2023, Advanced materials.

[2]  Bryon W. Larson,et al.  Compositional texture engineering for highly stable wide-bandgap perovskite solar cells , 2022, Science.

[3]  A. Jen,et al.  Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35% , 2022, Advanced materials.

[4]  Bryon W. Larson,et al.  Surface reaction for efficient and stable inverted perovskite solar cells , 2022, Nature.

[5]  Qiyuan He,et al.  Efficient and Stable 3D/2D Perovskite Solar Cells through Vertical Heterostructures with (BA)4AgBiBr8 Nanosheets , 2022, Advanced materials.

[6]  A. Jen,et al.  Efficient and Stable Tin Perovskite Solar Cells by Pyridine‐Functionalized Fullerene with Reduced Interfacial Energy Loss , 2022, Advanced Functional Materials.

[7]  S. Panahi,et al.  A review on theoretical studies of structural and optoelectronic properties of FA‐based perovskite materials with a focus on FAPbI3 , 2022, International Journal of Energy Research.

[8]  Chu‐Chen Chueh,et al.  Efficient and stable Cs2AgBiBr6 double perovskite solar cells through in-situ surface modulation , 2022, Chemical Engineering Journal.

[9]  Zhen Li,et al.  Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells , 2022, Science.

[10]  Yongzhen Wu,et al.  Stable α‐FAPbI3 in Inverted Perovskite Solar Cells with Efficiency Exceeding 22% via a Self‐Passivation Strategy , 2022, Advanced Functional Materials.

[11]  Mingzhen Liu,et al.  Pre‐Buried Additive for Cross‐Layer Modification in Flexible Perovskite Solar Cells with Efficiency Exceeding 22% , 2022, Advanced materials.

[12]  Fuzhi Huang,et al.  An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics , 2022, Nano Energy.

[13]  Xiaodong Li,et al.  Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells , 2022, Science.

[14]  A. Jen,et al.  Sulfonated Graphene Aerogels Enable Safe‐to‐Use Flexible Perovskite Solar Modules , 2021, Advanced Energy Materials.

[15]  Thomas J. Macdonald,et al.  Additive‐Free, Low‐Temperature Crystallization of Stable α‐FAPbI3 Perovskite , 2021, Advances in Materials.

[16]  Rui Zhu,et al.  Mechanochemistry Advances High‐Performance Perovskite Solar Cells , 2021, Advanced materials.

[17]  A. Jen,et al.  Interfacial Engineering of Wide‐Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells , 2021, Advanced Functional Materials.

[18]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[19]  Zhenghong Lu,et al.  Strain analysis and engineering in halide perovskite photovoltaics , 2021, Nature Materials.

[20]  Zhiwen Qiu,et al.  Synergistic Effects of Eu‐MOF on Perovskite Solar Cells with Improved Stability , 2021, Advanced materials.

[21]  R. Cao,et al.  Double-site defect passivation of perovskite film via fullerene additive engineering toward highly efficient and stable bulk heterojunction solar cells , 2021 .

[22]  W. Fang,et al.  Elimination of Charge Recombination Centers in Metal Halide Perovskites by Strain. , 2021, Journal of the American Chemical Society.

[23]  M. Yuan,et al.  Recent Progress on Formamidinium‐Dominated Perovskite Photovoltaics , 2021, Advanced Energy Materials.

[24]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[25]  P. Li,et al.  Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity , 2021, Science.

[26]  Yueli Liu,et al.  Doped Bilayer Tin(IV) Oxide Electron Transport Layer for High Open-Circuit Voltage Planar Perovskite Solar Cells with Reduced Hysteresis. , 2020, Small.

[27]  A. Jen,et al.  Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. , 2020, Journal of the American Chemical Society.

[28]  R. Schropp,et al.  Fabrication Strategy for Efficient 2D/3D Perovskite Solar Cells Enabled by Diffusion Passivation and Strain Compensation , 2020, Advanced Energy Materials.

[29]  U. Rothlisberger,et al.  Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells , 2020, Science.

[30]  S. Seok,et al.  Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells , 2020, Science.

[31]  Kilwon Cho,et al.  Molecular Engineering of Organic Spacer Cations for Efficient and Stable Formamidinium Perovskite Solar Cell , 2020, Advanced Energy Materials.

[32]  Yizhe Liu,et al.  Low‐Temperature Processed Carbon Electrode‐Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[33]  B. Stannowski,et al.  A piperidinium salt stabilizes efficient metal-halide perovskite solar cells , 2020, Science.

[34]  A. Jen,et al.  Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells , 2020 .

[35]  Andrew H. Proppe,et al.  Regulating strain in perovskite thin films through charge-transport layers , 2020, Nature Communications.

[36]  Ayan A. Zhumekenov,et al.  Low-Temperature Crystallization Enables 21.9% Efficient Single-Crystal MAPbI3 Inverted Perovskite Solar Cells , 2020, ACS Energy Letters.

[37]  Sheng Xu,et al.  Strain engineering and epitaxial stabilization of halide perovskites , 2020, Nature.

[38]  Jun Hee Lee,et al.  Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide , 2019, Science.

[39]  Pengwan Chen,et al.  Interfacial Residual Stress Relaxation in Perovskite Solar Cells with Improved Stability , 2019, Advanced materials.

[40]  Dong Suk Kim,et al.  Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells , 2019, Joule.

[41]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[42]  Pengwan Chen,et al.  Strain engineering in perovskite solar cells and its impacts on carrier dynamics , 2019, Nature Communications.

[43]  R. Quintero‐Bermudez,et al.  Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air , 2018, Nature Energy.

[44]  Jinsong Huang,et al.  Thin single crystal perovskite solar cells to harvest below-bandgap light absorption , 2017, Nature Communications.

[45]  Jinsong Huang,et al.  Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells , 2017, Science Advances.

[46]  S. Priya,et al.  Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation , 2016 .